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Introduction

Throughout the text, let M be a smooth compact Riemannian manifold

without boundary, and letm be the normalized Riemannian volume. The space

of all Cr vector fields on M endowed with the Cr topology will be denoted

by X
r�M). The flow induced by a vector field X ∈ X

1�M) will be denoted

by {ϕt
X}t∈R or simply {ϕt}t∈R if the generating vector field is clear from the

context. Let acip stand for absolutely continuous invariant probability, where

absolute continuity is understood with respect to the volume measure m.

1.1

Absolutely continuous invariant probabilities

The main aspect of invariant probabilities is that they reflect the asymptotical

behavior of almost every point with respect to those measures. Although the

Krylov-Bogolubov Theorem guarantees the existence of invariant probabilities

for compact metrizable spaces, it does not give any other information about the

measure. The invariant measure on a Riemannian manifold could be singular

to respect to the Riemannian volume. On the other hand, if an invariant

probability is absolutely continuous with respect to a volume measure, then it

is guaranteed that it reflects the asymptotical behavior of points in a set with

positive volume.

The problem of dealing with acips is that, except for the case of C1+α

expanding maps �which always admit an acip), it is not known of any other

system for which the existence of acips is open �in any topology). Even in

the context of expanding maps, it was shown by A. Quas �[Q]) in dimension

one and generalized by Avila and Boch in any dimension �[AB1]), that C1-

generic invariant probabilities are singular. Avila and Bochi also generalized

Quas result �in the one dimensional case) for σ-finite measures �[AB2]). In

the space of Ck Anosov Systems, the absence of acips is an open and dense

property. This follows from the Livsic periodic orbit criterion �See [L]).
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1.2

Main Theorem

In this work we extend the result of [AB1] for C1 flows. Let us state precisely

the theorem we prove.

Theorem 1.2.1 There exists a C1-residual subset R ⊂ X
1�M) such that if

X ∈ R, then X has no acip.

Notice that we are not assuming any regularity on the density of the

acip, other then integrability. If we ask the acip to be smooth or even holder-

continuous, the proof might be much simpler. Our strategy �like in [AB1]) does

not need to use these stronger hypotheses.

We assume that M has dimension d ≥ 3. There is no loss of generality

to do so, since the 2-dimensional case is a consequence of the fact that

Morse-Smale systems cannot admit an acip �Remark 2.5.3) and the following

celebrated result:

Theorem 1.2.2 �Peixoto, Pugh) Let M be a compact surface. The set of

all Morse-Smale systems is �open and) dense in X
1�M).

This theorem was proved for orientable surfaces �and a few non-orientable

ones) by M. Peixoto �actually in any Cr topology), and then for every surface

�in the C1 topology) by C. Pugh, using the Closing Lemma. See [PdM,

Chapter IV].

Peixoto’s original result points to the possibility that the lack of acips

might be generic even in higher topologies, since it implies that this is true at

least for orientable surfaces.

1.3

Remarks about the proof

The idea of the proof is similar to [AB1]. We consider for each δ ∈ �0� 1), the

set

Vδ =
�
X ∈ X

1�M) : there exist a Borel set K ⊂ M and T ∈ R such that

m�K) > 1− δ and m�ϕT
X�K)) < δ

�

These sets are clearly open �as shown in Remark 2.5.4); thus if we prove that

they are C1 dense, then the set

R ≡
�

δ∈Q∩�0�1)

Vδ
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will be a residual set. The fact that a vector field in R does not admit an

acip is a direct consequence of Lemma 2.5.1. We say that a vector field is δ-

crushing if X ∈ Vδ. All our effort in this work is to prove that δ-crushing is a

dense property. Thus we begin with an arbitrary X ∈ X
1�M) and a constant

δ ∈ �0� 1) and show how to construct a perturbation of X with the δ-crushing

property.

The strategy to prove denseness of Vδ has two main parts. First, we show

how to construct a perturbation of X supported on a tubular neighborhood of

a very long segment of orbit in a way that the δ-crushing property with respect

to the normalized volume can be verified inside this neighborhood. This is the

content of the Fettuccine’s Lemma �Lemma 5.0.22).

The next step is to show that we can cover the manifold �except for a

negligible measure set) with “crushable” sets, permitting us to construct the

perturbation globally and, consequently, to obtain the δ-crushing property with

respect to the volume of the whole manifold. This is done by a combination of

Lemma 3.0.6, where we construct a transverse section and a first return map

with some nice properties, and Lemma 6.0.2, which gives us a Rokhlin-like

tower with respect to that first return map.

Although the general idea of the proof follows [AB1], there are some

difficulties in adapting the proof to the continuous-time case. In both cases,

the crushing is done in one dimension only, making d-dimensional objects

essentially �d − 1)-dimensional. In the continuous case, the choice of the

crushing direction and the construction of the perturbation is done with the

help of a tubular chart with several technical properties �Theorem 4.0.15),

while in the discrete setting, an atlas is fixed with the only requirement that

charts on the atlas take the volume in M to the Lebesgue measure in Rd.

In [AB1], the crushable sets are contained in a discrete open tower and

it is possible, in that case, to make ‘a priori’ adjustments, like a linearizing

perturbation of the map in each level of the tower or a rotation of coordinates

that makes Rd−1×{0} invariant by the linear perturbed map. Moreover, these

adjustments make the discrete version of Fettuccine’s Lemma �[AB1, Lemma

3]) much simpler, since the lemma needs only to give a crushing perturbation

of a sequence of linear isomorphisms.

1.4

Structure of the work

In Section 2, we present some basic background which will be used throughout

the text. In §2.1, we give a slightly more general definition of Poincaré maps

and present a change of coordinates that straightens the local stable and
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unstable manifolds around a hyperbolic saddle, with the additional property

that the Euclidean norm in this coordinate system is adapted, that is, the

flow presents immediate hyperbolic contraction �resp., expansion) in the stable

�resp., unstable) coordinate. These adapted coordinates are used in the proof of

the existence of singular flow boxes around hyperbolic saddles �Lemma 3.0.7).

In §2.3, we make some remarks about linear cocycles, specially about one

specific cocycle that plays a major role in the proof of our result - the linear

Poincaré flow. We give also an example of a nonlinear cocycle - the orthonormal

frame flow - which is a main tool in the construction of the tubular chart

in Section 4. We have already mentioned that the non-existence of acips is

equivalent to a volume crushing property. In §2.5, we state and prove this

criterion, with some important observations about volume crushing. In §2.6,

we prove a lemma about integrals of functions with bounded logarithmic

derivative which is used to proof that, for long tubular neighborhoods, the

volume concentrated on the edges are relatively small. As in [AB1], we need

to use the Vitali covering theorem to guarantee that, except for a small set,

we can cover the manifold with crushable sets. In §2.7, we make a precise

definition of Vitali Coverings and state this theorem.

In Section 3, as mentioned above, we prove the existence of a singular flow

box around a hyperbolic saddle �Lemma 3.0.7) and use this lemma to construct

a transverse section with the property that every point in the manifold not

contained in the stable manifold of a sink �resp. the unstable manifold of a

source) must hit the section for the future �resp. for the past).

Section 4 is devoted to prove the existence of a C2 tubular chart which

enable the construction of the perturbation in Rd. The chart has several natural

properties and some technical ones. Before the proof of Theorem 4.0.15 we give

some informal explanation about this properties and how they help us in the

construction of the perturbation.

We have already made some remarks about the Fettuccine’s Lemma,

which gives us a perturbation of the vector field inside a long tubular neigh-

borhood. Besides the tubular chart, the proof of this lemma needs several other

ingredients and Section 5 is all devoted to present those tools and proving the

Lemma �the proof is given only in § 5.4). In §5.1 we give, in Lemma 5.1.2, an

explicit formula for the time t0 = t0��� δ) that must elapse for an �-perturbation

generate a δ-crushing property. We call this amount of time the crushing-time.

As in [AB1], the “size” T > 0 of the tubular neighborhood which supports

the perturbation �in that case, the height n of the open tower) must be much

bigger than the crushing-time. The reason is that the end of the crushable set

�with size less than t0) cannot be crushed. However, taking T � t0, we guar-
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antee that the relative volume of the non-crushed part is sufficiently small.

In §5.2 we define the sliced tubes, a type of tubular neighborhood saturated

by orthogonal cross-sections which are related to the Linear Poincaré Flow.

These sets are convenient to work with for many reasons. They are not bent

in the direction of the flow, for example, and their volumes are easily com-

puted. Proposition 5.2.7 shows that we can approximate a standard tubular

neighborhood by sliced tubes and in §5.3 we show how to construct a bump

function with bounded C1-norm inside a sliced tube. Finally, in Section 6, we

extend the local crushing property to the whole manifold, proving that it is

possible to cover the manifold �except for a small set) with crushable sets given

by Lemma 5.0.22.
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