
3

Transverse Section

In this section, we show that for a C1 open and dense subset of X1�M), we can

construct a transverse section and a return map with some properties �Lemma

3.0.6) that will permit us to use, in Section 6, a non-invariant Rokhlin lemma

�Lemma 6.0.2) to obtain a disjoint finite union of tubular neighborhoods that

cover M , except for a set of negligible Lebesgue measure.

Recall that a cross-section for a flow is a codimension 1 closed submani-

fold with boundary that is transverse to the vector filed.

Lemma 3.0.6 Let X ∈ X
1�M) be a vector field with only hyperbolic singular-

ities. Then there exists a cross-section Σ ⊂ M such that:

1. if x ∈ M does not belong to a stable manifold of a sink or saddle

singularity then the future orbit of x hits Σ;

2. if x ∈ M does not belong to an unstable manifold of a source or saddle

singularity then the past orbit of x hits Σ.

Before showing how to construct the cross-section Σ, we will prove an

intermediate step, which gives the appropriate cross-sections in the neighbor-

hood of a saddle-type singularity.

Lemma 3.0.7 �singular flow-box) Let p be a hyperbolic singularity of X ∈

X
1�M) of saddle type. Then there exist compatible cross-sections Σu and Σs

with the following properties:

1. If f : Σ̃u → Σ̃s is the Poincaré map given by Proposition 2.1.3, then

Σ̃u = Σu \ ∂Σu \W s
loc�p)�

Σ̃s = Σs \ ∂Σs \W u
loc�p).

2. Letting τ be the associated hitting-time, the set

V =
�

x∈Σ̃u

�

t∈[0�τ�x)]

ϕt�x)� �3.1)

is a closed neighborhood of the saddle p.
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3. For any point x ∈ M \V , if the future �resp. past) orbit of x hits V then

the first hit is in Σu �resp. Σs).

See Figure 3.1.

Figure 3.1: A saddle p with dimW s
loc�p) = 2 and dimW u

loc�p) = 1; the cross-
sections Σu and Σs are respectively a cylinder and a union of two disks.

Proof: Let �F� U) be the adapted chart given by Lemma 2.1.7 and r1, r2 > 0

such that Br1�0) × Br2�0) ⊂ F �U). For simplicity of notation, we will work

with the adapted coordinates without mentioning the chart F ; with abuse of

notation, {ϕt} will denote the flow of the vector field F∗�X|U) on the domain

F �U) �therefore not defined for all t ∈ R).

For ρ > 0 sufficiently small, define the following subsets of Rd ≡ R
s×R

u:

Cu
ρ ≡ {x = �xs� xu) : �xs� = r1� �xu� ≤ ρ}� Ĉu

ρ ≡ {x = �xs� xu) ∈ Cu
ρ : xu �= 0}�

Cs
ρ ≡ {x = �xs� xu) : �xs� ≤ ρ� �xu� = r2}� Ĉs

ρ ≡ {x = �xs� xu) ∈ Cs
ρ : x

s �= 0}.

Claim 3.0.8 For any � ∈ �0� r1), if δ ∈ �0� r2) is sufficiently small then

the future orbit of every point x ∈ Ĉu
δ leaves the chart neighborhood without

returning to Cu
δ , hitting Cs

� along the way.

Proof of the Claim: Let Λ > λ > 0 be the constants given by Lemma 2.1.7.

Given � ∈ �0� r1), take any δ ∈ �0� r2) such that

�
δ

r2

�λ/Λ

<
�

r1
.

Fix a point x = �xs� xu) ∈ Ĉu
δ and denote its trajectory under the flow

by �xs�t)� xu�t)). The norm inequalities from Lemma 2.1.7 hold until the

orbit leaves the neighborhood Br1�0) × Br2�0), i.e., either �xs�t)� = r1 or

�xu�t)� = r2. Since �x
s�t)� decreases and �xu�t)� exponentially increases with
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t, there exists T > 0 such that �xu�T )� = r2. Using �2.5) in Lemma 2.1.7, we

have

r2 = �xu�T )� ≤ eΛT · �xu�0)� = eΛT δ�

which leads us to

T >
1

Λ
log

�r2
δ

�
.

From the choice of δ, we obtain

T >
1

Λ
log

�r2
δ

�
>

1

λ
log

�r1
�

�
.

So, using �2.4) in Lemma 2.1.7, we have

�xs�T )� ≤ e−λT�xs�0)� = e−λT r1 < �

Therefore ϕT �x) ∈ Cs
� . This proves the claim.

We now continue with the proof of the lemma. Fix any � ∈ �0� r1) and

let δ ∈ �0� r2) be given by the claim. By Proposition 2.1.3, there is a Poincaré

map f+ : Ĉu
δ → Cs

� which is a diffeomorphism onto its image.

By symmetry, the claim above also applies to the inverse flow. Therefore

we can find some �� ∈ �0� �) �depending on δ) such that the past orbit of every

point in Ĉs
�� leaves the chart neighborhood without returning to Cs

�� , hitting Cu
δ

along the way. By Proposition 2.1.3, there is a Poincaré map f− : Ĉs
�� → Cu

δ

which is a diffeomorphism onto its image. Clearly, f− is a restriction of �f+)
−1.

Define Σs = Cs
�� and Σu = f−�Ĉs

��). Then Σu and Σs are compatible

cross-sections with the required properties.

Remark 3.0.9 If one assumes that the flow to be smoothly linearizable in

a neighborhood of the saddle, then one can slightly simplify the proof of

Lemma 3.0.7. By Sternberg Linearization Theorem, that assumption holds for

a dense subset of vector fields. However, we preferred to keep things more

elementary and avoid linearizations.

Proof of Lemma 3.0.6: For each point p ∈ M , we define a closed

neighborhood V �p) of p and a closed codimension 1 submanifold Σ�p) contained

in V �p) as follows:

– If p is a saddle-type singularity of X, then apply Lemma 3.0.7 and let

V �p) = V and Σ�p) = Σu ∪ Σs.

– If p is a sink �resp. source) singularity, let V �p) be a closed ball inside the

stable �resp. unstable) manifold of p, whose boundary is a sphere Σ�p)

transverse to X.
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– If p ∈ M is a non-singular point, let V �p) be a flow-box around p �i.e.,

a domain given by the flow-box theorem). Let Σ�p) be the union of the

two “lids” of the flow-box.

Cover the manifold by a finite number of sets intV �p), and let Σ be the

union of the corresponding Σ�p). We can arrange that this union is disjoint,

and therefore a manifold with boundary. Then Σ is a cross-section with the

desired properties. This proves the lemma.

Let Σ be the cross-section given by Lemma 3.0.6. Once we have con-

structed this transverse section, we need to know how to reduce the study of

the dynamics on the manifold to the study of the discrete dynamics on the

Poincaré section. Some remarks and propositions in this Section will help an-

swering this question, but it will be totally clear only in Section 6, with Lemma

6.0.2.

Applying Proposition 2.1.3, we obtain subsets Σ̃1, Σ̃2 ⊂ Σ and a Poincaré

map f : Σ̃1 → Σ̃2. Let σ be the �d− 1)-dimensional Riemannian volume on Σ.

Let us introduce some notation that will be used not only in the proof of

the following remark but also in Section 6. If A ⊂ Σ is a set for which f�A),

f 2�A), . . . , fJ−1�A) are defined, then we denote

TJ�A) ≡
J−1�

j=0

�

p∈fj�A)

�

t∈[0�τ�p)]

ϕt�p).

Remark 3.0.10 For all � > 0 and for all n ∈ �, there exists δ > 0 such that

if A ⊂ Σ is a measurable set with σ�A) < δ and f�A), f 2�A), . . . , fn−1�A)

are defined then

m�TJ�A)) < �.

Proof: Recall that σ-a.e. point in Σ that returns to Σ belongs to Σ̃1. By

Corollary 2.1.4, there exists δ∗ > 0 such that B ⊂ Σ̃1, σ�B) < δ∗ implies

m�T1�A)) < �/n.

The Poincaré map f : Σ̃1 → Σ̃2 is a C1 diffeomorphism. Therefore if Aj

is the subset of Σ where f j is defined, the push-forward f j
∗
�σ|Aj) is absolutely

continuous with respect to σ. So there exists δ > 0 such that if A ⊂ An and

σ�A) < δ then σ�f j�A)) < δ∗ for all integer 0 ≤ j ≤ n− 1. Thus we conclude

that m�T1�f
jA)) < �/n for each such j, which yields m�Tn−1�A)) < �.

Let Λ be the set of points x ∈ Σ such that fn�x) is well defined for all

n ∈ Z. Notice that this is a measurable set.
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The set of points in the manifold that hit Σ infinitely many times will be

denoted by MR, that is:

MR =
�

t∈R

ϕt�Λ).

Remark 3.0.11 The set MR is the complement of the union of stable and

unstable manifolds of the singularities of X.

Proof: Assume that the point x is in a stable manifold of a singularity, i.e.

ϕt�x) converges to a singularity q as t → +∞. Since Σ is compact and does

not contain q, the future orbit of x hits Σ at most finitely many times, showing

that x �∈ MR.

Conversely, if a point x is in no stable or unstable manifolds of singulari-

ties then it follows from Lemma 3.0.6 that its orbit {ϕt�x)} hits Σ in the future

and in the past. By invariance of stable and unstable manifolds, infinitely many

such hits occur. This shows that x ∈ MR.

In the following remark we will show that the crushing property is already

satisfied on M\MR, so we do not need to perturb the vector field on that set.

Remark 3.0.12 For all � > 0 there exist t̄ > 0 and a compact set K ⊂ M\MR

such that

m�K) > m�M\MR)− � and m�ϕt�K)) < � for all t > t̄.

Proof: Recall Remark 3.0.11. Since the stable and unstable manifolds of

saddles have zero m-measure, the set M \ MR coincides m-mod. 0 with the

union MS of stable manifolds of sinks and unstable manifolds of saddles. We

have seen in Remark 2.5.2 that this is a “self-crushing” set.

From now on, �f�Λ� σ) will denote the dynamical system defined by the

return Poincaré map f : Λ → Λ, together with the �non necessarily invariant)

measure σ.
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