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Tubular Chart

In this section we show that for a given C3 vector field, it is possible to

find, for a non-periodic point p ∈ M , an open neighborhood U of p and

a C2 diffeomorphism F : F−1�U) ⊂ R
d → U ⊂ M with some nice

properties �Theorem 4.0.15). This chart will allow us to construct the perturbed

vector field in the Euclidean space and to compute the volume crushing that

characterizes the non-existence of acips.

Let Leb denote the Lebesgue measure on R
d.

Definition 4.0.13 Given a constant C > 1, we say that a measure m � Leb,

supported in some open subset U ⊂ R
d, is C-sliced if its density

dm

dLeb
�x1� . . . � xd) = ω�x1)

depends only on the first coordinate and is such that

1. ω is C1;

2. ω�t) > 0 for all t;

3.
ω��t)

ω�t)
≤ C for all t.

Definition 4.0.14 Let U ⊂ R
d be a Borel set. We say that two measures m1,

m2 on U are comparable if

1

2
≤

m1�S)

m2�S)
≤ 2�

for all Borel subsets S ⊂ U .

Theorem 4.0.15 �Tubular Chart’s Theorem) Given a C3 vector field X

on M and a C2 cross-section Σ ⊂ M , there exists a constant C ≥ 1 with the

following properties. For any non-periodic point p ∈ Σ and any T > 0, there

exists a neighborhood V of p, an open set U ⊂ R
d, and a C2-diffeomorphism

F : U → F �U) ⊂ M such that:
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1. ϕt�V ) ⊂ F �U) for all t ∈ [−1� T + 1];

2. ϕt�p) = F �t� 0� . . . � 0), for all t ∈ [−1� T + 1];

3. the vector field X is tangent to the submanifold F ��Rd−1 × {0}) ∩ U);

4. F−1�Σ ∩ V ) ⊂ {0} × R
d−1;

5. NC
�
D�F−1�q)|TqΣ

�
≤ C, for all q ∈ Σ ∩ V ;

6. �DF �z)� ≤ C, for all z ∈ U ;

7. �DF �z)ed�·�DF−1�F �z))� ≤ C, for all z ∈ U �where ed = �0� . . . � 0� 1) ∈

R
d);

8. �D2F �z)� · � ed)� · �DF−1�F �z))� ≤ C, for all z ∈ U ;

9. if m is the Riemannian volume on M then �F−1)∗�m|F �U)) is comparable

to a C-sliced measure m̂ on U ;

10. letting {P t
p} �resp. {P̂ t

0}) be the linear Poincaré flow with base-point p

�resp. 0) for the vector field X on M �resp. X̂ ≡ �F−1)∗X on U), we

have �P t�s
p � = �P̂ t�s

0 � for all t� s ∈ [0� T ].

In order to clarify the significance of this result, we comment informally

how it fits in our general strategy:

– The purpose of the Theorem 4.0.15 is to put the vector field on a

neighborhood of a segment of orbit in a kind of standard form in order

to make it easier to find perturbations with a �local) crushing property.

– Conditions 2, 3 and 4 mean that the chart “straightens” respectively a

segment of trajectory, a codimension 1 invariant submanifold containing

this trajectory, and the disk Σ; see Figure 4.1.

– The change of coordinates should be uniformly controlled in several ways;

this is expressed by a single control parameter C. If C were allowed to

depend on the time length T , the result would be much easier; indeed,

in that case one could take a change of coordinates with stronger and

simpler properties. However, it is essential to our strategy that C does

not depend on T .

– The diffeomorphism F can be highly non-conformal. �In fact, we will

see in the proof that the expansion rates along hyperplanes {t} × R
d−1

can be much smaller than along the line R × {0}d−1.) Nevertheless, its

restriction to Σ ∩ V is approximately conformal, as stated in condition

5.
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Figure 4.1: Tubular Chart

– We follow the strategy of [AB1] and try to crush volumes in one di-

mension only, and so to make d-dimensional objects essentially �d − 1)-

dimensional. We will crush volume towards the codimension 1 subman-

ifold F ��Rd−1 × {0}) ∩ U) Under the change of coordinates provided by

the theorem, the new vector field needs only to be perturbed along the

direction of the d-th coordinate. We call such perturbations vertical.

– By pulling back a vertical perturbation of X̂ = �F−1)∗X, we should

obtain a C1-perturbation of X. Clearly, an upper bound on the C1-

distance of pulled-back vector fields should depend on the derivatives of

F and F−1 up to second order. As we will see later, technical conditions

6, 7 and 8 are precisely what is needed to make such control possible for

vertical perturbations.

– It would be nice if the map F−1 sent Riemannian volume in M to

a Lebesgue measure in R
d �or a constant multiple of it); however it

seems difficult to impose this extra requirement. We notice, however,

that to study the crushing property we can replace a measure by

a comparable one �in the sense of Definition 4.0.14.) Condition 9 in

Theorem 4.0.15 means that F−1 sends Riemannian volume in M to

something comparable to Lebesgue measure in R
d times a factor which

varies slowly with respect to time �in the sense of the last condition in

Definition 4.0.13). Those conditions will be sufficient for our strategy

to work, because our crushing estimates are basically done in “time

snapshots” �similarly to what happens in [AB1]).

– Condition 10 implies the norm of Poincaré flow for the new vector field

X̂ grows at most as much as fast as for X. This technical condition is

needed for the construction of the crushing perturbations.
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– The construction of the chart F uses the orthonormal frame flow �see

§ 2.4), whose class of differentiability is one less than the flow on M .

Since we need F to be C2, we ask X to be C3. And it is of course

necessary to ask Σ to be C2, in view of condition 4.

After those remarks, let us now prove Theorem 4.0.15:

Proof: By the Whitney embedding theorem, we can assume that M is

embedded in R
N , for some large N > d. Moreover, by the Nash Embedding

Theorem, we can assume that the Riemannian metric on M is inherited from

the Euclidean metric on R
N . �One could avoid appealing to Nash’s theorem by

noticing that, since M is compact, a change of Riemannian metric is absorbed

by a change of the constants in the statement of Theorem 4.0.15. Alternatively,

since our main theorem does not depend on the choice of the Riemannian

metric, we could have fixed a priori any suitable Riemannian metric to work

with.)

Fix a normal tubular neighborhood M � ⊂ R
N of M of some width

� > 0, and the associate bundle projection π : M � → M ; more precisely,

M � = {z ∈ R
N : d�z�M) ≤ �}, and for each z ∈ M �, π�z) is the point in M

which is closest to z.

Fix X ∈ X3�M). For any point p ∈ M and any orthonormal frame

f = �v1� . . . � vd) at TpM , we will define a map Gp�f : R×B� → M , where B� is the

closed ball in R
d−1 of center 0 and radius �, as follows. Let {�v1�t)� . . . � vd�t))}t∈R

be the trajectory of the orthonormal frame flow induced by X �recall § 2.4),

with initial conditions

vi�0) = vi� 1 ≤ i ≤ d.

Then we define

Gp�f : R× B� → M

�x1� x2� . . . � xd) �→ π
�
ϕx1�p) +

�d

j=2 xjvj�x1)
�

Since the orthonormal frame flow is C2 �because X is C3), this map is C2.

Moreover, by compactness of the orthonormal frame bundle, we can find a

constant C0 such that

�DGp�f�z)� ≤ C0� �D2Gp�f�z)� ≤ C0� �4.1)

for all p ∈ Σ, all orthonormal frames f ∈ �p, and all z ∈ R× B�.

Now assume that p ∈ M is nonsingular �i.e., X�p) �= 0) and f ∈ �p

satisfies
f = �v1� . . . � vd) where v1 =

X�p)

�X�p)�
. �4.2)
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Since G�x1� 0� . . . � 0) = ϕx1�p) ∈ M , and π is a C∞ retraction onto M , the

partial derivatives of Gp�f at �x1� 0 . . . � 0) are given by:

DGp�f�x1� 0� . . . � 0) · ej =






X�ϕx1�p)) = �X�ϕx1�p))�v1�x1) if j = 1�

vj�x1) if j ≥ 2�
�4.3)

where �e1� . . . � ed) is the canonical basis of R
d. In particular, the map Gp�f

is a local diffeomorphism at each point in the line R × {0}d−1 �under the

assumptions X�p) �= 0 and �4.2)).

Next, fix a C2 cross-section Σ ⊂ M . Notice that the pairs �p� f) where

p ∈ Σ and f ∈ �p satisfies �4.2) form a compact set. Since Σ is C2 and transverse

to X, for each such p and f, there is a neighborhood Vp of p such that

G−1
p�f �Σ ∩ Vp) =

�
�x� u) ∈ R× R

d−1 : x = gp�f�u)
�
� �4.4)

where gp�f is a C2 function on a open neighborhood of 0 in R
d−1. By compact-

ness, there is a constant C1 such that

�Dgp�f�0)� ≤ C1� �D2gp�f�0)� ≤ C1� �4.5)

for all p ∈ Σ and f satisfying �4.2). Also notice that gp�f�0) = 0.

Now fix p ∈ Σ and T > 0. The constant C that appears in the statement

of the Theorem will be exhibited later, but it will not depend on p and T .

Let v1 be given by �4.2). Choose some unit vector

vd ∈ TpΣ ∩ �X�p))⊥ �4.6)

�which is possible because we are assuming that d ≥ 3). Next, choose vectors

v2, . . . , vd−1 such that f = �v1� v2� . . . � vd) is an orthonormal d-frame on TpM .

�See Figure 4.2.)

Figure 4.2: Choice of the initial orthonormal frame for d = 3.

Define
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α ≡ min
t∈[−2�T+2]

�X�ϕt�p))� . �4.7)

For simplicity of notation, let G = Gp�f and g = gp�f. Define the following linear

isomorphism

Lα : R
d → R

d

�x1� x2� . . . � xd) �→ �x1� αx2� . . . � αxd)

Let

F1 = G ◦ Lα .

So �4.3) gives

DF1�x1� 0� . . . � 0) =

�







�X�ϕx1�p))�

α
. . .

α









� �4.8)

where the matrix is relative to the bases �e1� . . . � ed) in R
d and

�v1�x1)� . . . � vd�x1)) in Tϕx1 �p)M . By the inverse function theorem, there exists

a neighborhood U1 of [−2� T +2]×{0}d−1 such that F1|U1 is a diffeomorphism

onto an open subset of M .

Notice that F1 already satisfies property 2, that is, F1�t� 0� . . . � 0) = ϕt�p).

The role of F4 is basically to straighten two codimension 1 submanifolds in

order to obtain properties 3 and 4.

We split Rd as R× R
d−2 × R and take coordinates �x� w� y) with x ∈ R,

w ∈ R
d−2, y ∈ R.

If follows from �4.4) that for a sufficiently small neighborhood V � p,

F−1
1 �Σ ∩ V ) =

�
�x� w� y) ∈ R× R

d−1 : x = g�αw� αy)
�
. �4.9)

Recalling the choice �4.7) of vd, we obtain:

∂g

∂y
�0� 0) = Dg�0� 0) · ed = 0 . �4.10)

Define a diffeomorphism on a neighborhood of [−2� T +2]×dom�g) ⊂ R
d

by

F2�x� w� y) =
�
x− g�αw� αy)� w� y

�
.

So F2 ◦F−1
1 �Σ∩ V ) ⊂ {0}×R

d−2 ×R. Let {ϕ̃t} be the flow of the vector field

�F2 ◦ F−1
1 )∗X. Let H be a small neighborhood of 0 in {0} ×R

d−2 × {0}. Then

H̃ ≡
�

t∈[−1�T+1]

ϕ̃t�H)
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is a codimension 1 submanifold of Rd containing the line [−1� T +1]×{0}d−2×

{0}.

Claim 4.0.16 The tangent space of H̃ at any point of this line is R×R
d−2 ×

{0}.

Proof of the Claim: It follows from the definition of the orthonormal frame

flow that

Dϕt�p) · span�v1� . . . � vd−1) = span�v1�t)� . . . � vd−1�t)).

Notice that the image of this space under D�F2 ◦ F−1
1 )�ϕt�p)) is exactly the

tangent space of H̃ at �t� 0� 0). The claim follows.

It follows from the claim that, reducing H if necessary, the manifold H̃

is the graph of a function:

H̃ =
�
�x� w� y) : y = h�x� w)

�
�

where h : dom�h) ⊂ R× R
d−2 → R satisfies

h�x� 0) = 0 and Dh�x� 0) = 0 . �4.11)

�See Figure 4.3.)

Figure 4.3: The manifold H̃ as a graph

Define a diffeomorphism

F3�x� w� y) =
�
x� w� y − h�x� w)

�
.

So F3�H̃) ⊂ R× R
d−1 × {0}. The compose map

F3 ◦ F2�t� w� y) =
�
x− g�αw� αy)� w� y − h�x− g�αw� αy)� w)

�

DBD
PUC-Rio - Certificação Digital Nº 0721238/CA



Chapter 4� Tubular Chart 46

is a diffeomorphism; let F2 = �F3 ◦ F2)
−1, i.e.,

F4�x� w� y) =
�
x+ g�αw� αy + αh�x� w))� w� y + h�x� w)

�
.

Let us check that F = F1 ◦ F4 satisfies all properties in the statement of

the Theorem.

We have already mentioned that F1 satisfies property 2. Since F4 fixes

R× {0}d−1, the map F will clearly inherit this property.

Properties 4 and 3 are straightforward.

It follows from Property 4, that

DF−1�q)|TqΣ = �DF �F−1�q)))−1|{0}×R
d�1 . �4.12)

Thus, in order to check Property 5, observe that DF �0) · ej = αvj for

j = 2� . . . � d. In particular, DF �0) is conformal. Taking C ≥ 2, Property 5

follows by taking a sufficiently small neighborhood Ṽ = F−1�V ) of zero.

Using �4.11) and �4.10), we see that the derivative of F4 on the points in

R× {0}d−2 × {0} has the following �block) matrix expression:

DF4�t� 0� 0) =

�




1 α ∂g

∂w
�0� 0) 0

0 idd−2 0

0 0 1




 . �4.13)

In particular, using �4.5) and the fact that α ≤ �X�C0 , we obtain

��DF4�x� 0� 0))
±1� ≤ C2� �4.14)

where C2 depends only on X and Σ. Thus, reducing U if necessary, we can

assume that
��DF4�z))

±1� ≤ 2C2 for all z ∈ U. �4.15)

It follows from �4.7) and �4.8) that �DF1�x� 0� 0)� ≤ �X�C0 . Reducing U if

necessary, we can assume that

�DF1� ≤ 2�X�C0 on F4�U). �4.16)

Since F = F1 ◦F4, it follows from �4.15) and �4.16) that property 6 is satisfied,

provided the constant C is chosen bigger that 4C2�X�C0 .

Using �4.8) and �4.13), we have

DF �x� 0� 0)ed = DF1�F4�x� 0� 0)) ·DF4�x� 0� 0)ed

= DF1�x� 0� 0)ed = αvd�x).
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Reducing U , we obtain

�DF �z)ed� ≤ 2α for all z ∈ U . �4.17)

It follows from �4.7) and �4.8) that �DF−1
1 �ϕx�p))� = α−1. So, using

�4.14), we have

�DF−1�ϕx�p))� ≤ C2α
−1�

for all x ∈ [0� T ]. Reducing U , if necessary, we obtain

�DF−1�F �z))� ≤ 2C2α
−1� for all z ∈ U . �4.18)

Putting this together with �4.17), we obtain

�DF �z)ed� · �DF−1�F �z))� ≤ 4C2 ;

that is, property 7 is verified, provided we choose C ≥ 4C2.

Let us check property 8. First observe that the linear map D2F �z)�ed� ·)

is the derivative of the map

z = �x� w� y) �→ DF �z) · ed

= DG�Lα ◦ F4�z)) ◦ Lα ◦DF4�z) · ed

= DG�Lα ◦ F4�z)) ·

�

α
∂g

∂y
�w� y) · e1 + α · ed

�

= αΨ�z)�

where we define Ψ as

Ψ�x� w� y) = DG�Lα ◦ F4�z)) ·

�
∂g

∂y
�w� y) · e1 + ed

�

Using �4.1), �4.15), �4.5), and that α ≤ �X�C0
, we see that �DΨ� ≤ C3, for

some constant C3 depending only on X and Σ. That is, �D2F �z)�ed� ·)� ≤ C3α.

Putting this together with �4.18), we conclude that property 8 is satisfied,

provided C ≥ 2C2C3.

Let us check Property 9. For that matter, consider the measure m̂ defined

by

m̂�S) =

�

S

αd−1�X�ϕt�p))�dtdx2 . . . dxd�

where S ⊂ U is a Borel set in R
d.

Notice that we can represent DF1 as a matrix that sends the orthonormal

base {e1� ed� . . . � ed} of Rd to the orthonormal base {v1�t)� v2�t)� . . . � vd�t)} of

Tϕt�p)M . Thus the Jacobian of F1 is the determinant of such matrix. Using
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�4.8) and �4.13), we see that the Jacobian of F along �t� 0� . . . � 0) is

Jac�F )�t� 0� . . . � 0) = αd−1�X�ϕt�p))�.

Therefore, we can reduce U if necessary, to obtain

1

2
≤

Jac�F )�z)

αd−1�X�ϕt�p))�
≤ 2� �4.19)

for all z ∈ U .

By the change of variables formula,

F−1
∗ �m)�S) = m�F �S)) =

�

S

Jac�F )�t� x1� . . . � xd)dtdx2 . . . dxd�

which together with �4.19) leads us to conclude that m̂ is comparable to

F−1
∗ �m)|F �U). In order to show that m̂ is a C-sliced measure, observe that

if ω�t) = αd−1�X�ϕt�p))�, then

ω��t) ≤ αd−1

�
�
�
�
dX�ϕt�p))

dt

�
�
�
�

≤ αd−1�DX�ϕt�p)) ·X�ϕt�p))�

≤ αd−1�DX�C0 · �X�ϕt�p))�

≤ Cω�t)�

provided that the constant C is chosen bigger then the C1-norm of X.

It only remains to check Property 10. For that end, consider the canonical

basis in R
d and the basis �v1�t)� . . . � vd�t)) at the tangent space of M at ϕt�p).

We can express linear maps as matrices according to those bases. Thus:

Dϕ̂s�t� 0� 0) = �DF �t + s� 0� 0))−1 ◦Dϕs�ϕtp) ◦DF �t� 0� 0)

=

�
�X�ϕt+sp)�−1 ∗

0 α−1id

��
�X�ϕt+sp)�
�X�ϕtp)�

∗

0 P t�s
p

��
�X�ϕtp)� ∗

0 αid

�

=

�
1 ∗

0 P t�s
p

�

.

So the matrices of P̂
t�s
0 and P t�s

p coincide. Since we are taking matrices with

respect to orthonormal bases, Property 10 is satisfied.

Remark 4.0.17 Notice that Theorem 4.0.15 provides no uniform estimate

for the C1 norm of the new vector field X̂ = �F−1)∗X. It neither provides an
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estimate for the C2 norm of F �and in fact, �F�C2 can be arbitrarily large, as

shown by Example 4.0.18 below). However, no such estimates will be necessary.

Example 4.0.18 Let us exhibit one example where �F�C2 can be arbitrarily

large. The example will be constructed in M = R
3, but it is easy to adapt the

construction to a compact manifold M of dimension d = 3. For �x� w� y) ∈ R
3,

define X�x� w� y) = �1� 0� w2). The flow induced by X is given by

ϕt�x0� w0� y0) = �x0 + t� w0� y0 + w2
0t).

If p = �0� 0� 0), Property 2 is already satisfied and, in particular, for any T > 0

we have α = 1. Suppose Σ is a disc in R × {0} × R. By �4.2) we have

v1 = �1� 0� 0); suppose we choose v2 = �0� 1� 0), v3 = �0� 0� 1). Then the frame

�v1�t)� v2�t)� v3�t)) does not depend on t and H̃ is the graph of h�x� w) = xw2

�See Figure 4.4). Since we are already placed in R
3 and in a context where

the cross-section Σ and the base orbit are already “straight”, the role of the

diffeomorphism F is to straighten H̃, that is

F �x� w� y) = F4�x� w� y) = �x� w� y + h�x� w)).

Observe that the curvature of the surface H̃ along the x-axis tends to infinity.

In fact,

�D2F �x� 0� 0)� ≥

�
�
�
�
∂2h�x� 0)

∂w2

�
�
�
� = 2|x|.

Therefore, the second derivative of F is unbounded.

Let F : U ⊂ R
d → F �U) ⊂ M be given by Theorem 4.0.15. As explained

above, we need to compare the C1 norm of a vector field Ŷ ∈ X1�U) and its

push-forward F∗Ŷ ∈ X1�F �U)). Actually we will only study this problem for

vertical vector fields Ŷ ; the norm comparison is then given by the following:

Proposition 4.0.19 Let X ∈ X3�M) and F : U ⊂ R
d → F �U) ⊂ M be given

by Theorem 4.0.15. If Ψ : Rd → R is a C1 map and Ŷ ∈ X1�Û) is a vector

field of the form

�x1� x2� . . . � xd) → �0�Ψ�x1� x2� . . . � xd)� 0� . . . � 0)�

then

�F∗Ŷ �C1 ≤ 2C�Ŷ �C1 �

where C > 1 is the constant given by Theorem 4.0.15.
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Figure 4.4: The 1-codimensional submanifold H̃ = {�x� w� y) : y = xw2} in
Example 4.0.18 is graph of a function with unbounded second derivative.

Proof: Let us denote Y = F∗Ŷ . First, note that

�Y �C0 ≤ max
z∈U

�DF �z)� · �Ŷ �C0 .

From property 6 in Theorem 4.0.15, we obtain

�Y �C0 ≤ C�Ŷ �C0 .

Now, let us estimate the norm of the derivative. Observe that for a given z ∈ U

and v in TTzM �which we can identify with TzM , since M is embedded in some

R
N), we have

DY �z) · v = A · v +B · v�

where

A · v = DF �F−1�z)) ·DŶ �F−1�z)) ·DF−1�z) · v

and

B · v = D2F �F−1�z))�DF−1�z) · v� Ŷ �F−1�z))).

In order to estimate �A�, note that DŶ �p) · w = �DΨ�p) · w) · ed and

�DΨ�p)� ≤ �Ŷ �C1 . Then

�A� ≤ �DF �F−1�z)) ·DŶ �F−1�z))� · �DF−1�z)�

≤ �DF �F−1�z)) · ed� · �Ŷ �C1 · �DF−1�z)�.
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From property 7 in Theorem 4.0.15,

�A� ≤ C�Ŷ �C1 .

In order to estimate �B�, note that Ŷ �F−1�z)) = Ψ�F−1�z)) · ed and

�Ψ�F−1�z))� ≤ �Ŷ �C1 . Then

�B� ≤ �D2F �F−1�z)�ed� ·)� · �Ŷ �C1 · �DF−1�z)�.

From property 8 of Theorem 4.0.15 we obtain

�B� ≤ C�Ŷ �C1

and conclude that

�DY �z)� ≤ 2C�Ŷ �C1 �

as claimed.

Now that we have presented the type of tubular chart we need in the

proof of our result, we can define a κ-rectangle - a set with dimension �d− 1),

transverse to the flow and with a specific geometry that will meet our future

needs.

Definition 4.0.20 Given 0 < κ < 1 we say that U0 ⊂ Σ is a κ-rectangle if

there exists ρ > 0 and a tubular chart F : U → M such that

F �{0} × [−κρ� κρ]× [−ρ� ρ]d−2) = U0.

Remark 4.0.21 The bounded eccentricity of the Euclidean κ-rectangles im-

plies clearly that they form a Vitali Cover of {0} × R
d−1. By Item �5) of

Theorem 4.0.15 and Remark 2.7.5, we conclude that κ-rectangles form a Vitali

Cover of Σ ∩ V .
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