

Eulher Chaves Carvalho

Vibrações Não Lineares e Não Planares e Instabilidade Dinâmica de Barras Esbeltas

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do Título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientador: Prof. Paulo Batista Gonçalves Co-orientador: Prof. Zenón J. G. N. del Prado Co-orientador: Prof. Giuseppe Rega

PUC-Rio - Certificação Digital Nº 0912757/CA

Rio de Janeiro Fevereiro de 2013

Eulher Chaves Carvalho

Vibrações Não Lineares e Não Planares e Instabilidade Dinâmica de Barras Esbeltas

Tese apresentada como requisito parcial para obtenção do Título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Paulo Batista Gonçalves Orientador

Departamento de Engenharia Civil - PUC-Rio

Prof. Zenón J. G. N. del Prado Co-orientador Universidade Federal de Goiás – UFG

Profa. Deane Mesquita Rohel Departamento de Engenharia Civil – PUC-Rio

Prof. Raul Rosas e Silva Departamento de Engenharia Civil – PUC-Rio

> Profa. Eliane Maria Lopes Carvalho Universidade Federal Fluminense – UFF

Prof. José Manoel Balthazar Universidade Estadual Paulista Júlio de Mesquita Filho

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 25 de fevereiro de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Eulher Chaves Carvalho

Graduou-se em Engenharia Civil na Universidade Estadual de Goiás – UEG em 2005 e possui mestrado em Engenharia Civil pela Universidade Federal de Goiás – UFG (2008).

Ficha Catalográfica

Carvalho, Eulher Chaves

Vibrações não lineares e não planares e instabilidade dinâmica de barras esbeltas / Eulher Chaves Carvalho; orientador: Paulo Batista Gonçalves; coorientadores: Zenón J. G. N. Del Prado, Giuseppe Rega – 2013.

228 f. : il. (color.) ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2013.

Inclui bibliografia

1. Engenharia Civil – Teses. 2. Dinâmica não linear. 3. Vibrações não lineares. 4. Instabilidade dinâmica. 5. Efeito de cargas axiais estáticas. 6. Efeito de excitações harmônicas laterais. 7. Acoplamento flexão-flexão-torção. 8. Análise de bifurcações. I. Gonçalves, Paulo Batista. II. Del Prado, Zenón J. G. N. III. Rega, Giuseppe IV. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. V. Título. PUC-Rio - Certificação Digital Nº 0912757/CA

Para minha esposa, mãe e avó, as mulheres da minha vida.

Agradecimentos

Ao meu orientador, Professor Paulo Batista Gonçalves.

Aos meus co-orientadores, Professor Zénon J. G. N. del Prado e Professor Giuseppe Rega.

À Ciência Logosófica.

Ao CNPq, CAPES, FAPERJ, PUC-Rio e Universitá Sapienza.

Aos meus familiares, amigos e funcionários do DEC.

Aos meus professores, em especial, à Professora Deane Mesquita Rohel.

Aos professores que participaram da comissão examinadora.

Resumo

Carvalho, Eulher Chaves; Gonçalves, Paulo Batista; Del Prado, Zenón J. G. N.; Rega, Giuseppe. **Vibrações Não Lineares e Não Planares e Instabilidade Dinâmica de Barras Esbeltas**. Rio de Janeiro, 2013. 228 p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O movimento tridimensional de elementos de barras, tais como vigas e colunas, tem sido extensivamente estudado nas últimas décadas. Este elemento estrutural pode ser encontrado em varias aplicações de engenharia, incluindo pontes, torres, guindastes, edifícios, navios, estação espaciais, antena de satélites, micro e nano sistemas eletromecânicos, etc. Em muitas destas aplicações, a barra está submetida a cargas axiais concentradas ou a excitações harmônicas laterais, as quais podem desempenhar um papel fundamental no seu comportamento dinâmico, especialmente tratando-se de barras esbeltas. Neste trabalho, uma barra esbelta, inextensível e engastada-livre é investigada. Atenção especial é dada ao efeito da carga axial, excitação lateral, assimetria da seção transversal e imperfeições geométricas iniciais, nas oscilações não lineares, bifurcações e instabilidades da estrutura, problemas, até então, não abordados na literatura sob este enfoque. Com este objetivo, as equações não lineares integro-diferenciais que descrevem o acoplamento modal de flexão-flexão-torção da barra são usadas, juntamente com o método de Galerkin, para se obter um conjunto de equações discretizadas de movimento, que é resolvido utilizando-se o método de Runge-Kutta. Não linearidades inerciais e geométricas são consideradas nesta pesquisa. Uma análise paramétrica detalhada, usando várias ferramentas de dinâmica não linear, revelam o complexo comportamento dinâmico do sistema nas regiões de ressonância paramétrica e externa. Além disso, por meio da variação dos parâmetros de rigidez da estrutura, um complexo comportamento dinâmico é observado perto da região de ressonância interna 1:1:1. Nesta região, várias bifurcações conduzem a múltiplas soluções coexistentes, incluindo movimentos planares e não planares. Bifurcações que levam a movimentos caóticos e quase periódicos também são observadas. Além disso, os resultados mostram que a quebra de simetria, seja ela imposta por pequenas variações na seção transversal ou por imperfeições geométricas iniciais, possui uma profunda influência nos diagramas de bifurcações da estrutura. Finalmente, o trabalho mostra como as ferramentas de dinâmica não linear podem ajudar na compreensão da segurança global e integridade do modelo estrutural, levando assim a uma concepção estrutural mais segura.

Palavras-chave

Dinâmica não linear; vibrações não lineares; instabilidade dinâmica; efeito de cargas axiais estáticas; efeito de excitações harmônicas laterais; acoplamento flexão-flexão-torção; análise de bifurcações.

Abstract

Carvalho, Eulher Chaves; Gonçalves, Paulo Batista (Advisor); Del Prado, Zenón J. G. N. (Co-advisor); Rega, Giuseppe (Co-advisor). **Nonlinear and Nonplanar Vibrations and Dynamic Instability of Slender Bars**. Rio de Janeiro, 2013. 228 p. Thesis – Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

The three-dimensional motion of bar elements, such as beams and columns, has been extensively studied in the past decades. This structural element can be found in several engineering applications, including bridges, towers, cranes, buildings, ships, spacecraft station, satellite antenna, micro and nano electronic mechanical systems. In many of these applications, the bar structure is subjected to concentrated axial loads or lateral harmonic excitations, which can play an important role in its dynamic behavior, especially in very slender bars. Thus, in this work, an inextensible clamped-free slender bar is investigated. Special attention is given to the effect of the axial load, lateral excitation, cross section symmetry breaking effect, and geometric imperfections on the nonlinear oscillations, bifurcations and instabilities of the structure, problems not tackled in the previous literature on this subject. To this aim, the nonlinear integrodifferential equations describing the flexural-flexural-torsional modal coupling of the bar are used, together with the Galerkin method, to obtain a set of discretized equations of motion, which are in turn solved by using the Runge-Kutta method. Both inertial and geometric nonlinearities are considered in the present analysis. A detailed parametric analysis, using several tools of nonlinear dynamics, unveils the complex dynamic behavior in the parametric and external resonance regions. Also, by varying the stiffness parameters of the structure, a complex dynamic behavior is observed near to the region where a 1:1:1 internal resonance occurs. In this region several bifurcations leading to multiple coexisting solutions, including planar and nonplanar motions are obtained. Bifurcations leading to chaotic and quasiperiodic motions are also observed. The results also show that symmetry

breaking, imposed by small cross section variations or initial geometric imperfections, has profound influence on the bifurcation diagrams of the structure. Finally, the work shows how the tools of nonlinear dynamics can help in the understanding of the global safety and integrity of the structural model, thus leading to a safe structural design.

Keywords

Nonlinear dynamics; nonlinear vibrations; dynamic instability; effect of axial static preload; effect of lateral harmonic excitation; flexural-flexural-torsional coupling; bifurcation analysis.

Sumário

1.	INTRODUÇÃO	26
1.1.	Aspectos gerais	26
1.2.	Vibrações não planares de barras esbeltas: interação flexão- flexão-torção	26
1.3.	Análise de barras autoportantes	31
1.4.	Objetivos	35
1.5.	Escopo do trabalho	35
2.	EQUAÇÕES DE MOVIMENTO DA BARRA	37
2.1.	Aspectos gerais	37
2.2.	O sistema dinâmico	37
2.3.	Os ângulos de Euler	38
2.4.	Barra inextensível	44
2.5.	Equação de Lagrange	45
2.6.	O princípio de Hamilton	50
2.7.	Equação de movimento com não linearidades cúbicas	53
2.8.	Expansão das equações de movimento	56
2.9.	Redução do modelo a duas variáveis	59
2.10	. Imperfeição geométrica	60
2.11.	. Autofunções	69
2.12	. Discretização das equações de movimento pelo Método de Galerkin	72

3. ANÁLISE DO MOVIMENTO ACOPLADO DE BARRAS COM ELEVADA RIGIDEZ À TORÇÃO

3.1.	Aspectos gerais	79
3.2.	Vibração livre não linear	79
3.3.	Vibração forçada amortecida – flexão simples	83
3.4.	Vibração forçada amortecida – flexão oblíqua	101
3.5.	Efeito da assimetria da seção transversal	115
3.6.	Carga axial	126
3.6.1	. Influência da carga axial estática na relação frequência amplitude	127
3.6.2	. Instabilidade paramétrica nas regiões principal e fundamental de ressonância	129
3.6.3	. Influência da carga axial estática na fronteira de instabilidade paramétrica	137
3.6.4	. Influência da carga axial estática na resposta não linear da barra sob excitação lateral	137
4.	ANÁLISE DO MOVIMENTO ACOPLADO DE BARRAS COM BAIXA RIGIDEZ À TORÇÃO	142
4.1.	Aspectos gerais	142
4.2.	Seção transversal em forma de cruz	142
4.3.	Variável escrava	165
4.4.	Carga axial	169
4.4.1	. Influência da carga axial estática na relação frequência amplitude	170
4.4.2	. Instabilidade paramétrica nas regiões principal e fundamental de ressonância	170
4.4.3	. Influência da carga axial estática na fronteira de instabilidade paramétrica	175
4.4.4	. Influência da carga axial estática na resposta não linear da barra	

sob excitação lateral

5.	ANÁLISE DO MOVIMENTO ACOPLADO DE BARRAS COM IMPERFEIÇÕES GEOMÉTRICAS INICIAIS	181
5.1.	Aspectos gerais	181
5.2.	Vibração livre não linear	181
5.3.	Vibração forçada amortecida – flexão simples	184
5.4.	Vibração forçada amortecida – flexão oblíqua	193
5.5.	Seção transversal em forma de cruz	201
6.	CONCLUSÕES E CONSIDERAÇÕES FINAIS	206
6.1.	Conclusões	206
6.2.	Proposta para continuação desta tese	208
7.	REFERÊNCIA BIBLIOGRÁFICA	209
APÊ	NDICE 1	216
APÊ	NDICE 2	220

Índice de Ilustrações

Figura 1.1 – Barras autoportantes: eólicas e de transmissão.	32
Figura 1.2 – Barras autoportantes: maciças e treliçadas.	33
Figura 2.1 – Sistema dinâmico: (a) Referencial adotado; (b) Vetor posição.	38
Figura 2.2 – Rotação em torno do eixo \hat{z} de um ângulo ψ .	39
Figura 2.3 – Rotação em torno do eixo $\hat{\eta}_1$ de um ângulo θ .	40
Figura 2.4 – Rotação em torno do eixo $\hat{\xi}_2$ de um ângulo ϕ .	40
Figura 2.5 – Derivadas parciais com respeito ao tempo t e posição s .	41
Figura 2.6 – Relação dos ângulos ψ e θ com as derivadas espaciais.	44
Figura 2.7 – Barra engastada-livre com excitação harmônica distribuída nas direções $Y \in Z$.	56
Figura 2.8 – Forma das autofunções associadas às equações de movimento linearizadas.	71
Figura 3.1 – Resposta no tempo para vibração livre não amortecida da barra.	82
Figura 3.2 – Relação frequência-amplitude.	83
Figura 3.3 – Diagramas de bifurcação para barra com amortecimento $c_v = c_w = c_\gamma = 5\%$ e solicitações $q_v = 0,20$ e $q_w = 0,00$.	84
Figura 3.4 – Detalhes do diagrama de bifurcações da Figura 3.3 na região de ressonância.	85
Figura 3.5 – Diagramas de bifurcações no espaço v vs. w vs. Ω para barra com amortecimento $c_v = c_w = c_\gamma = 5\%$ e magnitude da solicitação lateral variando de $q_v = 0,025$ a $q_v = 0,200$.	86
 Figura 3.6 – Multiplicadores de Floquet para o diagrama de bifurcação da Figura 3.3 e Figura 3.4: (a) e (b) Referentes ao braço de soluções B1; (c) e (d) Referentes ao braço de soluções B2 e B3. 	87
Figura 3.7 – Superposição dos braços de soluções estáveis para barra com amortecimento $c_v = c_w = c_\gamma = 5\%$, solicitações $q_v = 0,20$ e $q_w = 0,00$. Coexistência de soluções.	89
Figura 3.8 – Saltos dinâmicos para barra com amortecimento $c_v = c_w = c_{\gamma} = 5\%$ e solicitações $q_v = 0,20$ e $q_w = 0,00$.	90
Figura 3.9 – Seção investigada nos diagramas de bifurcação da barra com amortecimento $c_v = c_w = c_\gamma = 5\%$ e solicitações $q_v = 0,20$ e	

$q_w = 0,00.$	92
Figura 3.10 – Resposta no tempo e plano de fase para barra com amortecimento $c_v = c_w = c_\gamma = 5\%$, solicitações $q_v = 0,20$ e $q_w = 0,00$ e frequência $\Omega = 3,68$.	93
Figura 3.11 – Seções da bacia de atração para barra com amortecimento $c_v = c_w = c_\gamma = 5\%$, solicitações $q_v = 0,20$ e $q_w = 0,00$ e frequência $\Omega = 3,68$.	94
Figura 3.12 – Diagrama de bifurcações para viga com seção transversal quadrada, Ω ,=,3,55, amortecimento $c_v = c_w = c_\gamma = 5\%$ e solicitações $q_w = 0,0$ e q_v variável.	95
Figura 3.13 – Diagramas de bifurcação para viga com seção transversal retangular, Ω ,=,3,63, amortecimento $c_v = c_w = c_\gamma = 5\%$ e solicitações $q_w = 0,0$ e q_v variável.	97
Figura 3.14 – Diagramas de bifurcação para viga com seção transversal retangular, Ω ,=,3,68, amortecimento $c_v = c_w = c_\gamma = 5\%$ e solicitações $q_w = 0,0$ e q_v variável.	98
Figura 3.15 – Diagramas de bifurcação para viga com seção transversal retangular, Ω ,=,3,72, amortecimento $c_v = c_w = c_\gamma = 5\%$ e solicitações $q_w = 0,0$ e q_v variável.	99
Figura 3.16 – Diagramas de bifurcação para viga com seção transversal retangular, Ω ,=,4,20, amortecimento $c_v = c_w = c_\gamma = 5\%$ e solicitações $q_w = 0,0$ e q_v variável.	100
Figura 3.17 – Diagramas de bifurcação para viga com seção transversal retangular, Ω ,=,4,25, amortecimento $c_v = c_w = c_\gamma = 5\%$ e solicitações $q_w = 0,0$ e q_v variável.	101
Figura 3.18 – In fluência da frequência da excitação nos diagramas de bifurcação.	102
Figura 3.19 – Influência da magnitude da carga nos diagramas de bifurcação. Amortecimento $c_v = c_w = c_\gamma = 5\%$ e q_v variável. Variável de estado v.	103
Figura 3.20 – Influência da magnitude da carga nos diagramas de bifurcação. Amortecimento $c_v = c_w = c_\gamma = 5\%$ e q_v variável. Variável de estado <i>w</i> .	104
Figura 3.21 – Influência da magnitude da carga nos diagramas de bifurcação. Amortecimento $c_v = c_w = c_\gamma = 5\%$ e q_v variável. Variável de estado γ .	105
Figura 3.22 – Diagramas de bifurcação para barra com amortecimento $c_v = c_w = c_\gamma = 5\%$ e solicitações $q_v = q_w = 0,14142135$	106
Figura 3.23 – Detalhes do diagrama de bifurcações da Figura 3.22 na região de ressonância.	107
Figura 3.24 – Superposição dos braços de soluções estáveis para barra com amortecimento $c_{y} = c_{y} = c_{z} = 5\%$ e solicitações $a_{y} = a_{y} =$	

PUC-Rio - Certificação Digital Nº 0912757/CA

Figura 3.16 – Diagramas de bifurcação para viga com seção
transversal retangular,
$$\Omega$$
,=,4,20, amortecimento $c_v = c_w = c_\gamma =$
5% e solicitações $q_w = 0,0$ e q_v variável.

Figura 3.17 – Diagramas de bifurcação para viga com seção
transversal retangular,
$$\Omega$$
,=,4,25, amortecimento $c_v = c_w = c_\gamma =$
5% e solicitações $q_w = 0,0$ e q_v variável.

Figura 3.19 – Influência da magnitude da carga nos diagramas de bifurcação. Amortecimento
$$c_v = c_w = c_\gamma = 5\%$$
 e q_v variável. Variável de estado v.

- C_W $= c_{\gamma}$ v ÇC q_w q_v

0,14142135	108
Figura 3.25 – Saltos dinâmicos para barra com amortecimento $c_v = c_w$ = $c_\gamma = 5\%$ e solicitações $q_v = q_w = 0,14142135$.	109
Figura 3.26 – Seção investigada nos diagramas de bifurcação da barra com amortecimento $c_v = c_w = c_\gamma = 5\%$ e solicitações $q_v = q_w = 0,14142135$	110
Figura 3.27 – Resposta no tempo e plano de fase para barra com amortecimento $c_v = c_w = c_\gamma = 5\%$, solicitações $q_v = q_w = 0,14142135 q_v = q_w = 0.14142135$ 62 e frequência $\Omega = 3,68$.	111
Figura 3.28 – Bacias de atração para barra com amortecimento $c_v = c_w$ = $c_{\gamma} = 5\%$, solicitações $q_v = q_w = 0,14142135$ e frequência $\Omega = 3,68$.	112
Figura 3.29 – Evolução do diagramas de bifurcações no espaço $v-w-\Omega$, para barra com amortecimento $c_v = c_w = c_\gamma = 5\%$ e direção resultante do carregamento variando de 0° à 45°.	113
Figura 3.30 – Evolução do diagramas de bifurcações no espaço $v - w - \gamma$, para a barra com amortecimento $c_v = c_w = c_\gamma = 5\%$ e direção resultante do carregamento variando de 0° à 45°.	114
Figura 3.31 - Diagrama de bifurcações no espaço <i>v</i> vs. <i>w</i> vs. $\Omega c_v = c_w$ = $c_{\gamma} = 5\%$ e diferentes magnitudes da força resultante $(,q_v^2, +, q_w^2,)^{0.5}$ a 22,5°.	115
Figura 3.32 - Diagrama de bifurcações no espaço v vs. w vs. γ para c_v = $c_w = c_\gamma = 5\%$ e diferentes magnitudes da força resultante $(,q_v^2, +, q_w^2,)^{0.5}$ à 22,5°.	116
Figura 3.33 - Diagrama de bifurcações no espaço v vs. w vs. Ω para c_v = $c_w = c_\gamma = 5\%$ e diferentes magnitudes da força resultante $(,q_v^2, +, q_w^2,)^{0.5}$ à 45,0°.	117
Figura 3.34 - Diagrama de bifurcações no espaço v vs. w vs. γ para c_v = $c_w = c_{\gamma} = 5\%$ e valores crescentes de $(,q_v^2, +, q_w^2,)^{0.5}$ à 45,0°.	118
Figura 3.35 – Diagrama de bifurcações no espaço v vs. w vs. Ω para viga com solicitação lateral com resultante $(,q_v^2,+,q_w^2,)^{0,5} = 0,050$ aplicada a 45,0° e diferentes coeficientes de	110
amortecimento. Figura 3.36 – Diagramas de bifurcação no espaço $v - w - \Omega$ para as três direções da excitação	119
Figura 3.37 – Diagramas de bifurcação no espaço $w - \gamma - \Omega$ para as três direções da excitação	120
Figura 3.38 – Comparação dos diagramas de bifurcação para <i>a,/,b,=,1.00, a,/,b,=,0,99</i> e <i>a,/,b,=,1.01</i> para excitação aplicada a	121
45°.	123
Figura 3.39 – Curva de ressonancia no plano $y = \Omega$	124

p Ig

Figura 3.40 – Saltos dinâmicos para frequência de excitação crescente (azul) e decrescente (vermelho).	125
Figura 3.41 – Projeções das resposta no tempo e planos de fase dos atratores coexistentes em Ω ,=,3.643.	126
Figura $3.42 - \text{Seções}$ da bacia de atração para $\Omega_{,=,3.643}$.	126
Figura 3.43 – influência da carga axial estática na menor frequência natural de vibração e na relação frequência-amplitude.	128
Figura 3.44 – Fronteira de instabilidade paramétrica no espaço de controle. Carga axial : $q_{u,,,}\cos(1\Omega_{u1}t_1)$.	130
Figura 3.45 – Diagrama de bifurcações e mapa de Poincaré para barra sujeita a uma carga axial, considerando $\Omega_u = 2 \omega_0$.	130
Figura 3.46 – Diagrama de bifurcações para $\Omega_u = 2 \omega_0$ na vizinhança da fronteira de instabilidade paramétrica.	132
Figura 3.47 – Soluções estáveis coexistentes para $q_u = 0.38$ e $\Omega = 2$ ω_0 .	133
Figura 3.48 – Soluções não triviais coexistentes para $q_u = 1,00$ e $\Omega = 2$ ω_0 .	134
Figura 3.49 – Resposta caótica para elevadas magnitude da solicitação. $q_u = 1,18$ e $\Omega = 2 \omega_0$.	135
Figura 3.50 – Diagrama de bifurcações para barra sob força axial harmônica: $q_{u}\cos(1.97_1\omega_{01}t_1)$.	135
Figura 3.51 – Diagrama de bifurcações para barra sob força axial harmônica: q_{u} , cos, $(2,02_1\omega_{01}t_1)$.	135
Figura 3.52 – Soluções na região fundamental de instabilidade paramétrica $\Omega =_I \omega_0$.	136
Figura 3.53 – Diagrama de bifurcações para viga sujeita ao aumento da carga axial estática, considerando $\Omega = 2 \omega_0$.	138
Figura 3.54 – Fronteira de instabilidade paramétrica par carga axial estática $P_s 1/1P_{cr} 1=10.35$ (caso 3).	138
Figura 3.55 – Diagrama de bifurcação na região principal de instabilidade paramétrica. $P_s 1/1P_{cr}1=10.35$ (caso 3).	139
Figura 3.56 – Efeito da carga axial estática nos diagrama de bifurcações tendo a frequência de vibração da carga lateral como parâmetro de controle.	139
Figura 3.57 – Efeito da carga axial estática nos diagrama de bifurcações tendo a magnitude da carga lateral como parâmetro de controle.	140
Figura 3.58 – Diagrama de bifurcações no espaço $v - w - q_v$, considerando a carga lateral a 45°. Caso 0, $\Omega_v = 3.63$.	141
Figura 4.1 – Representação esquemática da seção transversal da barra na forma de cruz.	143

Figura 4.2 – Diagrama de bifurcações no espaço $v - w - \Omega$ para os 12 casos listados na Tabela 4.1.	145
Figura 4.3 – Diagrama de bifurcações no espaço $v - \gamma - \Omega$ para os 12 casos listados na Tabela 4.1.	146
Figura 4.4 – Diagrama de bifurcações no espaço $v - w - \Omega$ para o 8 caso, listados na Tabela 4.1.	149
Figura 4.5 – Detalhe da curva de ressonância da Figura 4.4.	149
Figura 4.6 – Diagramas de bifurcações, na região de ressonância, para os três graus de liberdade.	150
Figura 4.7 – Identificação das soluções coincidentes na região fundamental de ressonância.	150
Figura 4.8 – Saltos dinâmicos entre diferentes soluções estáveis incrementando (em azul) e decrescendo (em vermelho) a frequência da excitação. Perturbação v,=,w,=, y,=,0,001.	152
Figura 4.9 – Saltos dinâmicos entre diferentes soluções estáveis incrementando e decrescendo a frequência da excitação. Perturbação ν,=,w,=,0,001 e γ,=,0,800.	152
Figura 4.10 – Resposta no tempo, plano de fase e seções de Poincaré das seis orbitas periódicas detectadas em Ω ,=,3,68.	153
Figura 4.11 – Projeção do plano de fase das seis respostas periódicas observadas em Ω ,=,3,68.	154
Figura 4.12 – Diferentes projeções da bacia de atração em Ω ,=,3,68.	155
Figura 4.13 – Seções da bacia de atração definida pelo hiperplano	
$v = 1.0548$, $w = 0.1411$, $\gamma = 4.5741$ e $\gamma = 0.4574$, em $\Omega_{\gamma} = ,3,68$.	155
Figura 4.14 – Evolução das bacias de atração incrementando a frequência de excitação ($\gamma = \dot{v} = \dot{w} = \dot{\gamma} = 0.0$).	158
Figura 4.15 – Atrator rosa associado à região branca nas seções da bacia de atração da Figura 4.25.	159
Figura 4.16 – Comportamento dinâmico do atrator quase periódico na Figura 4.25.d. $\Omega = 3.57$, $\gamma = \dot{v} = \dot{w} = \dot{\gamma} = 0.0$, $v = -0.19$ e $w = 0.11$.	159
Figura 4.17 – Comportamento dinâmico do atrator quase periódico na Figura 4.25.f. $\Omega = 3.59$, $\gamma = \dot{v} = \dot{w} = \dot{\gamma} = 0.0$, $v = -0.51$ e $w = 0.41$.	160
Figura 4.18 – Comportamento dinâmico do atrator quase periódico na Figura 4.25.j. $\Omega = 3.62$, $\gamma = \dot{v} = \dot{w} = \dot{\gamma} = 0.0$, $v = -0.15$ e $w = -0.73$	160
Figura 4.19 – Diagrama de hifurcações Janela de soluções quase	100
periódicas exemplificadas na Figura 4.16 à Figura 4.18.	161
Figura 4.20 – Seção da bacia de atração definida pelo hiperplano $\dot{v} = 1.0548$, $\dot{w} = 0.1411$, $\gamma = 0.4574$ e $\dot{\gamma} = 4.5741$ para $\Omega = 3.62$.	161

Figura 4.21 – Fronteira de instabilidade próxima à região de

ressonância interna 1:1:1.	161
Figura 4.22 – Diagramas de bifurcações na região de ressonância interna 1:1:1, considerando $2.60 \le \Omega < \omega_0$.	163
Figura 4.23 – Diagramas de bifurcações na região de ressonância interna 1:1:1, considerando $\Omega \ge \omega_0 < 4,00$.	164
Figura 4.24 – Comparação entre os diagramas de bifurcação considerando três e dois graus de liberdade. Barra com seção transversal em cruz, $\omega_{\gamma} = 3,381$, amortecimento $cv = cw = c\gamma = 5\%$ e solicitações $q_v = 0,20$ e $q_w = 0,00$. Caso 10.	167
Figura 4.25 – Comparação entre os diagramas de bifurcação considerando três e dois graus de liberdade. Barra com seção transversal em cruz, $\omega_{\gamma} = 3,381$, amortecimento $cv = cw = c\gamma = 5\%$ e solicitações $q_v = q_w = 0,14142135$. Caso 10.	168
Figura 4.26 – Comparação entre os diagramas de bifurcação considerando três e dois graus de liberdade. Barra com seção transversal em cruz, $\omega_{\gamma} = 4,267$, amortecimento $cv = cw = c\gamma = 5\%$ e solicitações $q_v = q_w = 0,14142135$. Caso 5.	169
Figura 4.27 – Influência da carga axial estática na menor frequência natural de vibração e na relação frequência vs. amplitude da barra.	171
Figura 4.28 – Fronteira de instabilidade paramétrica no espaço de controle. Carga axial: $q_{u,n} \cos(I\Omega_{ul}t_l)$.	172
Figura 4.29 – Diagrama de bifurcações para barra sujeita a uma carga axial, na vizinhança da frequência principal ($\Omega_u = 2 \omega_0$).	173
Figura 4.30 – Diagrama de bifurcações para barra sujeita a uma carga axial, considerando $\Omega_u = 2 \omega_0$.	174
Figura 4.31 – Soluções estáveis coexistentes para $q_u = 0,70$ e $\Omega = 2$ ω_0 .	174
Figura 4.32 – Diagrama de bifurcações e mapa de Poincaré para barra sujeita a uma carga axial, considerando $\Omega_{\mu} = \omega_0$.	176
Figura 4.33 – Soluções estáveis coexistentes para $q_{\mu} = 1.35$ e $\Omega_{\mu} = \omega_0$.	177
Figura 4.34 – Diagrama de bifurcações para viga sujeita ao aumento da carga axial estática, considerando $\Omega = 2 \omega_0$.	178
Figura 4.35 – Projeções bidimensionais dos diagrama de bifurcações obtidos com o método da continuação e considerando a frequência de vibração da carga lateral como parâmetro de controle.	179
Figura 4.36 – Projeções bidimensionais dos diagrama de bifurcações obtidos com o método da força bruta para $P_{s,/}, P_{cr,}=,0,15$ (caso 2) e considerando a Ω_v como parâmetro de controle.	179
Figura 4.37 – Resposta caótica para elevadas magnitude da solicitação. $P_{s,/}, P_{cr,=}, 0, 15$ (caso 2) e $\Omega_v = 3, 20$.	180

Figura 5.1 – Efeito das imperfeições nas frequências naturais de vibração da barra.	184
Figura 5.2 – Diagrama de bifurcações para barra com amortecimento $c_v = c_w = c_\gamma = 0,6\%$ e solicitação lateral $Q_v = 0,025,\cos,(\Omega_v,t)$. Estrutura perfeita.	185
Figura 5.3 – Diagramas de bifurcações para barra com imperfeição geométrica inicial $v_0 = 0,01$.	186
Figura 5.4 – Diagramas de bifurcações para barra com imperfeição geométrica inicial $w_0 = 0,01$.	187
Figura 5.5 – Soluções estáveis coexistentes para $q_u = 0,025$, $\Omega v = 3,66064$ e $v_0 = 0,01$.	188
Figura 5.6 – Soluções estáveis coexistentes para $q_u = 0,025$, $\Omega v = 3,66064$ e $w_0 = 0,01$.	189
Figura 5.7 – Seção v vs. w da bacia de atração definida por \dot{v} =1.88135(, \dot{w} =-0.470302, γ =0.011297 e $\dot{\gamma}$ =0.051874 para Ω_{v} = 3,66064 e v_{0} = 0.01.	189
Figura 5.8 – Seção da bacia de atração definida por \dot{v} =1.88135(, \dot{w} =-0.470302, γ =0.011297 e $\dot{\gamma}$ =0.051874 para Ω_{v} = 3,66064 e w_{0} = 0,01.	190
Figura 5.9 – Diagramas de bifurcações para barra com imperfeição geométrica inicial $v_{0,=}, w_{0,=}, 0,001$.	191
Figura 5.10 – Diagramas de bifurcações para barra com imperfeição geométrica inicial $v_{0,=}, w_0, =, 0, 01$.	191
Figura 5.11 – Diagrama de bifurcações e plano fase para barra com imperfeição geométrica inicial $v_{0,=,}w_{0,}=,0,01$, obtido fazendo γ ,=,0,0 no sistema de equações.	192
Figura 5.12 – Diagramas de bifurcações para barra com imperfeição geométrica inicial $v_{0,\neq}, w_{0,\neq}, 0, 0$.	193
Figura 5.13 – Diagramas de bifurcações para barra com amortecimento $c_v = c_w = c_\gamma = 0,6\%$, solicitação lateral $Q_v = Q_w = 0,01767766952,\cos,(\Omega,t)$ e imperfeição geométrica inicial $v_0 = 0.01$	194
Figura 5.14 – Diagrama de bifurcações para barra com amortecimento $c_v = c_w = c_\gamma = 0.6\%$, solicitação lateral $Q_v = Q_w = 0.01767766952, \cos(\Omega, t)$ e imperfeição geométrica inicial $w_0 = 0.01$.	195
Figura 5.15 – Soluções estáveis coexistentes para $q_v = q_w = 0,01767766952$, $\Omega v = 3,66064$ e $v_0 = 0,01$.	196
Figura 5.16 – Soluções estáveis coexistentes para $q_v = q_w = 0,01767766952$, $\Omega v = 3,66064$ e $w_0 = 0,01$.	197
Figura 5.17 – Comparação entre os diagramas de bifurcações da Figura 6.20 ($v_0 = 0,01$) e Figura 6.21 ($w_0 = 0,01$) com o da barra	

sem imperfeições geométricas iniciais ($v_0 = w_0 = 0,00$).	198
Figura 5.18 – Diagrama de bifurcações para barra com amortecimento $c_v = c_w = c_\gamma = 0,6\%$, solicitação lateral $Q_v = Q_w = 0,01767766952,\cos,(\Omega,t)$ e imperfeição geométrica inicial $v_0 = w_0 = 0,01$.	199
Figura 5.19 – Diagrama de bifurcações para barra com amortecimento $c_v = c_w = c_\gamma = 0.6\%$, solicitação lateral $Q_v = Q_w = 0.01767766952, \cos(\Omega, t)$ e imperfeição geométrica inicial $v_0 = w_0 = 0.01$.	200
Figura 5.20 – Diagramas de bifurcações para barra com amortecimento $c_v = c_w = c_\gamma = 0,6\%$, solicitação lateral $Q_v = 0.02256463211,\cos(\Omega_v,t)$ e $Q_v = 0.01076277742,\cos(\Omega_w,t)$ e imperfeição geométrica inicial $v_0 = 0,01$.	200
Figura 5.21 – Diagrama de bifurcações para barra com amortecimento $c_v = c_w = c_\gamma = 0,6\%$, solicitação lateral $Q_v = 0.02256463211,\cos(\Omega_v,t)$ e $Q_v = 0.01076277742,\cos(\Omega_w,t)$ e imperfeição geométrica inicial $w_0 = 0,01$.	201
Figura 5.22– Diagrama de bifurcações para barra com razão e / b = 0,0625, frequência naturais $\omega_v = \omega_w = 3,516$ e $\omega_\gamma = 3,702$, amortecimento $c_v = c_w = c_\gamma = 0,6\%$ e solicitação lateral $Q_v = 0,025,\cos(\Omega v,t)$.	202
Figura 5.23 – Soluções periódicas estáveis identificadas no diagrama de bifurcações da Figura 5.22.a, considerando $\Omega_v = 1,75$.	202
Figura 5.24 – Soluções periódicas estáveis identificadas no diagrama de bifurcações da Figura 5.22.a, considerando $\Omega_v = 3,35$.	203
Figura 5.25 – Soluções periódicas estáveis identificadas no diagrama de bifurcações da Figura 5.22.a, considerando $\Omega_v = 3,45$.	203
Figura 5.26 – Diagrama de bifurcações para barra com razão e / b = 0,0625, amortecimento $c_v = c_w = c_\gamma = 0,6\%$, solicitação lateral Q_v = 0,025,cos,($\Omega v,t$) e imperfeição geométrica $v_0 = 0,001$.	204
Figura 5.27 – Diagrama de bifurcações para barra com razão e / b = 0,0625, amortecimento $c_v = c_w = c_\gamma = 0,6\%$, solicitação lateral Q_v = 0,025,cos,($\Omega v,t$) e imperfeição geométrica $w_0 = 0,001$.	204
Figura 5.28 – Diagrama de bifurcações para barra com razão e / b = 0,0625, amortecimento $c_v = c_w = c_\gamma = 0,6\%$ e solicitação lateral $Q_v = 0,025,\cos(\Omega v,t)$.	205

Índice de Tabelas

Tabela $3.2 - Coordenadas dos pontos limites e de bifurcaçãoobservados na Figura 3.24.107Tabela 3.3 - Propriedades geométricas e frequências naturais devibração.117Tabela 4.1 - Seções cruciformes investigadas e frequências naturais devibração da barra com razões b / h = 1 e L / b = 25.144Tabela 4.2 - Angulos de torção máximos alcançados nos diagramas debifurcações da Figura 4.3.147Tabela 4.3 - Coordenadas dos pontos limites.151Tabela 4.4 - Seções em forma de cruz adicionais.165Tabela 4.5 - Seções em forma de cruz investigadas no estudo davariável escrava.166$	Tabela 3.1 – Coordenadas espaciais dos pontos limites e de bifurcação observados na Figura 3.7.	90
 Tabela 3.3 – Propriedades geométricas e frequências naturais de vibração. Tabela 4.1 – Seções cruciformes investigadas e frequências naturais de vibração da barra com razões b / h = 1 e L / b = 25. Tabela 4.2 – Ângulos de torção máximos alcançados nos diagramas de bifurcações da Figura 4.3. Tabela 4.3 – Coordenadas dos pontos limites. Tabela 4.4 – Seções em forma de cruz adicionais. Tabela 4.5 – Seções em forma de cruz investigadas no estudo da variável escrava. 	Tabela 3.2 – Coordenadas dos pontos limites e de bifurcação observados na Figura 3.24.	107
 Tabela 4.1 – Seções cruciformes investigadas e frequências naturais de vibração da barra com razões b / h = 1 e L / b = 25. Tabela 4.2 – Ângulos de torção máximos alcançados nos diagramas de bifurcações da Figura 4.3. Tabela 4.3 – Coordenadas dos pontos limites. Tabela 4.4 – Seções em forma de cruz adicionais. Tabela 4.5 – Seções em forma de cruz investigadas no estudo da variável escrava. 	Tabela 3.3 – Propriedades geométricas e frequências naturais de vibração.	117
 Tabela 4.2 – Ângulos de torção máximos alcançados nos diagramas de bifurcações da Figura 4.3. Tabela 4.3 – Coordenadas dos pontos limites. Tabela 4.4 – Seções em forma de cruz adicionais. Tabela 4.5 – Seções em forma de cruz investigadas no estudo da variável escrava. 	Tabela 4.1 – Seções cruciformes investigadas e frequências naturais de vibração da barra com razões $b / h = 1$ e $L / b = 25$.	144
Tabela 4.3 – Coordenadas dos pontos limites.151Tabela 4.4 – Seções em forma de cruz adicionais.165Tabela 4.5 – Seções em forma de cruz investigadas no estudo da variável escrava.166	Tabela 4.2 – Ângulos de torção máximos alcançados nos diagramas de bifurcações da Figura 4.3.	147
Tabela 4.4 – Seções em forma de cruz adicionais.165Tabela 4.5 – Seções em forma de cruz investigadas no estudo da variável escrava.166	Tabela 4.3 – Coordenadas dos pontos limites.	151
Tabela 4.5 – Seções em forma de cruz investigadas no estudo da variável escrava.166	Tabela 4.4 – Seções em forma de cruz adicionais.	165
	Tabela 4.5 – Seções em forma de cruz investigadas no estudo da variável escrava.	166

Lista de Símbolos

(X, Y, Z)	Eixos materiais de referência da barra
(ξ, η, ζ)	Eixos principais de referência da barra
S	Comprimento de arco
С	Centroide da seção transversal
t	Tempo
$u=u\ (s,t)$	Deslocamento elástico ao longo do eixo material X
v = v(s, t)	Deslocamento elástico ao longo do eixo material Y
w = w(s, t)	Deslocamento elástico ao longo do eixo material Z
$\psi = \psi(s, t)$	Primeiro ângulo de Euler
$\theta = \theta(s, t)$	Segundo ângulo de Euler
$\phi = \phi(s, t)$	Terceiro ângulo de Euler
$\omega(s,t)$	Velocidade angular
ω_{ξ}	Velocidade angular em torno do eixo referencial ξ
ω_η	Velocidade angular em torno do eixo referencial η
\mathcal{O}_{ζ}	Velocidade angular em torno do eixo referencial ζ
$\rho(s,t)$	Curvatura
$ ho_{\xi}$	Mudança de curvatura por torção
$ ho_\eta$	Mudança de curvatura por flexão em torno do eixo
	referencial η
$ ho_{\zeta}$	Mudança de curvatura por flexão em torno do eixo
-	referencial ζ
V(t)	Energia potencial total
$T\left(t ight)$	Energia cinética
$\ell(s,t)$	Densidade do Lagrangeano
L	Comprimento da barra
J	Matriz de inércia
J_{ξ}	Momento de inercia da barra em torno do eixo referencial ξ

J_η	Momento de inercia da barra em torno do eixo referencial η
J_ζ	Momento de inercia da barra em torno do eixo referencial ζ
р	Massa específica da barra
A	Área da seção transversal
$U\left(t ight)$	Energia interna de deformação
D_{ξ}	Rigidez à torção da barra em torno do eixo referencial ξ
D_η	Rigidez à torção da barra em torno do eixo referencial η
D_{ζ}	Rigidez à torção da barra em torno do eixo referencial ζ
E	Módulo de Young
G	Módulo de cisalhamento
L (<i>t</i>)	Lagrangeano
$\lambda\left(t ight)$	Multiplicador de Lagrange
W_{NC}	Trabalho realizado pelas forças não conservativas
$Q_{\alpha}^{*}(\alpha = u, v, w, \phi)$	Forças generalizadas
$\delta_{\alpha} (\alpha = u, v, w, \phi)$	Deslocamentos generalizados
$c_{\alpha}(\alpha = u, v, w, \phi, \gamma)$	Coeficientes de amortecimento viscoso
$\gamma = \gamma(s, t)$	Ângulo de torção da barra
$Q_{v}\left(t ight)$	Carga uniformemente distribuída ao longo do comprimento
	da barra, aplicada na direção v
$Q_{w}\left(t ight)$	Carga uniformemente distribuída ao longo do comprimento
	da barra, aplicada na direção v
$Q_{u}\left(t ight)$	Carga concentrada axialmente aplicada na direção u.
8	Aceleração da gravidade
M_{γ}	Momento torsor distribuído aplicado ao longo da barra
Ω_u	Frequência de vibração da excitação, na direção u
Ω_v	Frequência de vibração da excitação, na direção v
Ω_w	Frequência de vibração da excitação, na direção w
q_u	Amplitude da excitação dinâmica aplicada em u
q_v	Amplitude da excitação dinâmica aplicada em v
q_w	Amplitude da excitação dinâmica aplicada em w
P_s	Parcela estática do carregamento axial
т	Massa por unidade de comprimento da barra
$v_0 = v_0(t)$	Curvatura inicial da barra (imperfeição geométrica) na

direção de v

$w_0 = w_0(t)$	Curvatura inicial da barra (imperfeição geométrica) na
	direção de w
$\phi_0 = \phi_0 (t)$	Rotação inicial do eixo neutro da barra (imperfeição
	geométrica)
$\gamma_{0}=\gamma_{0}\left(t ight)$	Ângulo de torção inicial da barra (imperfeição geométrica)
	em torno do eixo neutro
$F_{v}(s)$	Autofunção associada à parte linearizada de v
$F_{w}(s)$	Autofunção associada à parte linearizada de w
$F_{\gamma}(s)$	Autofunção associada à parte linearizada de γ
α_{vi} , α_{wi} , $\alpha_{\gamma i}$	Coeficientes de Galerkin
PF	Ponto limite tipo pitchfork
SN	Ponto limite tipo sela-nó
PD	Ponto limite de dobra de período
ω_0	Frequência natural de vibração da barra
P _{cr}	Carga crítica
λ_i	Expoente de Lyapunov
L _{cr}	Comprimento crítico
a	Altura da seção transversal da barra, quando quadrada
b	Base da seção transversal da barra
h	Altura da seção transversal da barra, quando cruciforme
е	Espessura da seção transversal da barra
C_{v}	Fator de amplificação do deslocamento v
C_w	Fator de amplificação do deslocamento w
C_{γ}	Fator de amplificação do ângulo de torção γ

"Pois bem: que deve fazer o homem para evitar que a adversidade o persiga e o oprima? Deixar de ser ignorante e inconsciente, aperfeiçoando-se; eis aí sua missão e o único objetivo de sua vida. E nada facilita mais seu aperfeiçoamento do que a análise e o estudo de seus erros passados e presentes, por ser este o melhor caminho e o mais curto para descobrir rapidamente as próprias deficiências. Depois, sua preocupação consistirá em eliminá-las, eliminando assim a causa que produzia em sua vida efeitos negativos da mais variada índole."

> Carlos Bernardo González Pecotche (www.logosofia.org.br)