Fabrício Carlos Pinheiro de Oliveira

Petroleum Supply Chain Management under Uncertainty: Models and Algorithms

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em Engenharia de Produção of the Departamento de Engenharia Industrial, PUC-Rio as partial fulfillment of the requirements for the degree of Doutor em Engenharia de Produção

Advisor: Prof. Silvio Hamacher

Rio de Janeiro
September 2012
Fabrício Carlos Pinheiro de Oliveira

Petroleum Supply Chain Management under Uncertainty: Models and Algorithms

Thesis presented to the Programa de Pós-Graduação em Engenharia de Produção of the Departamento de Engenharia Industrial do Centro Técnico Científico da PUC–Rio, as partial fulfillment of the requirements for the degree of Doutor.

Prof. Silvio Hamacher
Advisor
Departamento de Engenharia Industrial — PUC–Rio

Prof. Abílio Lucena
Departmento de Administração – UFRJ

Prof. Fernanda Raupp
Departmento de Engenharia Industrial – PUC-Rio

Prof. Ignacio E. Grossmann
Department of Chemical Engineering – Carnegie Mellon

Prof. Virgílio Ferreira Filho
Universidade Federal do Rio de Janeiro – COPPE/UFRJ

Prof. José Eugênio Leal
Coordinator of the Centro Técnico Científico — PUC–Rio

Rio de Janeiro — September 11, 2012
Fabrício Carlos Pinheiro de Oliveira

Fabrício Oliveira graduated from PUC-Rio in Industrial Engineering. Since 2007, he has worked at the Center of Excellence in Optimization Solutions (NExO/PUC-Rio) where he has participated and coordinated research projects in Petroleum Supply Chain planning.
To my wife Jeniffer,
my father Julio, and my mother Francisca.
Acknowledgments

I would like to express my gratitude to my adviser, Prof. Silvio Hamacher. He was, and still is, one of the greatest examples in my life. I am eternally grateful for all the doors that he have opened for me, his continuous support, and trust. I hope that I can still count with his friendship and his guidance for the years to come.

It was an honor for me having the opportunity to work with Prof. Ignacio Grossmann at Carnegie Mellon University. It was an incredible experience to be able to learn so many new things with him and his group. My sincere thanks goes to him for his support and dedication to me during my stay.

I would like to thank Prof. Alexandre Street and Prof. Luiz Felipe Scavarda from PUC-Rio for their support, friendship, and example of being a good teacher.

I also want to thank my friends for listening to my considerations and the support during my PhD. I had an incredible time during these years and it was mostly because of you.

This work would have never been possible without the unconditional love and support of my family, especially from my beloved wife Jeniffer. I know it was though to be away, but I don’t think I would have made through without her support. My gratitude to her is beyond what words can express.

At last, I would like to acknowledge the financial support from the CNPq grant throughout these years, especially when I was abroad during my internship at Carnegie Mellon University.
Abstract


In this thesis we investigate the investment planning problem for the petroleum supply chain under demand uncertainty. We formulate and solve a two-stage stochastic programming model that seeks to accurately represent the particular features that are inherent to the investment planning for the petroleum logistics infrastructure.

The incorporation of uncertainty in this case inevitably increases the complexity of the problem, which becomes quickly intractable as the number of scenarios grows. We circumvent this drawback by relying on Sample Average Approximation (SAA) to control the number of scenarios required to reach a prespecified level of tolerance regarding solution quality. We also focus on efficiently solving the stochastic programming problem, exploiting its particular structure by means of a scenario-wise decomposition. Following this idea, we propose two novel approaches that focus on decomposing the problem in a way that it could be efficiently solved.

The first algorithm is based on stochastic Benders decomposition, which we further improve by using new acceleration techniques proposed in this study. The second is a novel algorithm based on Lagrangean decomposition that was designed to deal with the case where we have integer variables in the second-stage problem. The novel feature in this algorithm is related with the hybrid strategy for updating the Lagrange multipliers, which combines subgradient, cutting-planes and trust region ideas. In both cases, we have assessed the proposed approaches considering a large-scale real-world instances of the problem. Results suggests that they attain superior performance.

Keywords

Resumo


Nesta tese é abordado o problema de planejamento de investimentos para a cadeia de fornecimento de petróleo sob incerteza. Neste contexto, um modelo de programação estocástica de dois estágios é formulado e resolvido. Tal modelo busca representar com precisão as características particulares que são inerentes ao planejamento de investimentos para a infra-estrutura logística de petróleo.

A incorporação da incerteza neste contexto inevitavelmente aumenta a complexidade do problema, o qual se torna rapidamente intransitável conforme cresce o número de cenários. Tal dificuldade é contornada baseando-se na aproximação por média amostral (AMA) para controlar o número de cenários necessários para atingir um nível pré-especificado de tolerância em relação à qualidade da solução. Além disso, é considerado o desenvolvimento de técnicas que resolvam de maneira eficiente o problema, explorando sua estrutura especial, através de decomposição por cenários. Seguindo esta ideia, propõe-se duas novas abordagens para decompor o problema de forma que o mesmo possa ser eficientemente resolvido.

O primeiro algoritmo é baseado na decomposição estocástica de Benders, a qual é aprimorada usando-se novas técnicas de aceleração propostas. O segundo consiste de um novo algoritmo baseado em decomposição Lagrangeana que foi projetado para lidar com o caso onde temos variáveis inteiras no problema de segundo estágio. A característica inovadora desse algoritmo está relacionada com a estratégia híbrida utilizada para atualizar os multiplicadores de Lagrange, combinando subgradientes, planos de cortes e regiões de confiança. Em ambos os casos as abordagens propostas foram avaliadas considerando um exemplo de grande escala do mundo real e os resultados sugerem que os mesmos apresentam desempenho superior quando comparados com outras técnicas disponíveis na literatura.

Palavras-chave
Contents

1 Introduction 12
1.1 Objectives 13
1.2 Thesis Organization 14

2 Problem Statement 15
2.1 Problem Description 15
2.2 Mathematical Model 18
   Nomenclature 18
   Model Formulation 21
   First-stage problem 21
   Second-stage problems 22

3 Dealing with Demand Uncertainty using Sample Average Approximation 26
3.1 Sample Average Approximation 27
   Lower bound approximation 28
   Upper bound approximation 29
   Estimating the gap 30
3.2 Scenario generation using SAA 31
3.3 Case Study 33
   Case description 33
   Results 37
3.4 Conclusions 41

4 Scenario decomposition framework for continuous second-stage problem: stochastic Benders decomposition 42
4.1 Mathematical Model 44
   Nomenclature 44
   Model Formulation 45
4.2 Stochastic Benders Decomposition 46
4.3 Accelerating Benders Decomposition 49
   Multi cut framework 50
   Generating stronger cuts 50
   Additional acceleration ideas 54
   Upper bound improving 54
   Trust-region 55
   Algorithm statement 56
4.4 Numerical Experiments 57
4.5 Conclusions 60
## Contents

5 Scenario decomposition framework for mixed-integer second-stage problem: stochastic Lagrangean decomposition 62

5.1 Mathematical Model 63
   - Nomenclature 63
   - Model Formulation 64

5.2 Solution Algorithm 65
   - Lagrangean Decomposition Approach 65
   - Proposed strategy for solving the Lagrangean Dual 68
   - Upper bounding procedure 70
   - Multiplier updating procedure 71
   - Algorithm statement 73

5.3 Risk Management 74

5.4 Numerical results 76
   - Example 1 76
   - Example 2 81

5.5 Conclusions 85

6 Conclusions 86

6.1 Thesis Contributions 87

6.2 Future Perspectives 89

Bibliography 91
List of Figures

2.1 Example of a multi-period network investment planning 15
2.2 Piecewise linear representation of nonlinear demurrage cost 17
3.1 Case study distribution network 34
3.2 Case study demand levels 36
3.3 Example of demand scenarios 37
4.1 Schematic representation of the proposed stochastic Benders decomposition 49
4.2 Geometric illustration of cut strength 51
5.1 Schematic representation of the proposed Lagrangean decomposition 69
5.2 Network structure of example 1 77
5.3 Convergence Profile: Subgradient algorithm and sequential formulation 80
5.4 Convergence Profile: Proposed algorithm and sequential formulation 80
5.5 Convergence Profile: Subgradient algorithm and asymmetric formulation 81
5.6 Convergence Profile: Proposed algorithm and different algorithms 81
5.7 Multi-scale approximation representation 82
5.8 Cost distribution for 200 scenarios 83
5.9 Cost distribution for 200 scenarios after risk management 84
5.10 Cost distribution comparison 85
List of Tables

2.1 Model Notation: Sets and subsets 19
2.2 Model Notation: Parameters 20
2.3 Model Notation: Variables 21

3.1 Seaworthiness between locations 35
3.2 Investment portfolio for locations 35
3.3 Summary of model sizes 38
3.4 Experiment results: statistical limits (lower and upper) 39
3.5 Experiment results: estimative of the optimality gap 39
3.6 Investment profiles of solution 3 for $N = 20$, solution 3 for $N = 30$ and solution 2 for $N = 40$ 40

4.1 Model Notation 45
4.2 Summary of CPU times(s) - experiment 1 59
4.3 Summary of CPU times(s) - experiment 2 60

5.1 Model Additional Notation 64
5.2 Example 1 Capacity expansion decisions 78
5.3 Example 1 Network design decisions 78
5.4 Summary of CPU times(s) 78
5.5 Deterministic Equivalent Sizes 82
5.6 Summary of CPU times(s) 82
To choose doubt as a philosophy of life is akin to choosing immobility as a means of transportation.

Yann Martel, *Life of Pi.*