
2
Carbon nanotubes

In this chapter I will describe the basic properties of carbon nanotubes

regarding some electronic and mechanical properties. Those properties are the

motivation for the study of this carbon structure.

2.1
Carbon

Carbon is an element with atomic number of 6, and a standard mass of 12.

It can form a great variety of allotropes such as graphite, diamond, amorphous

carbon, fullerenes, carbon nanotubes and the recently discovered graphene

(1). The reason for the formation of those many materials and the formation

of the huge number of carbon containing molecules, is the presence of four

valence electrons on 2s22p2 orbitals with almost no interaction with the higher

binding energy 1s2 core electrons. Because of the low energy difference between

the 2s and the 2p orbitals, the wave function of those four external electrons

superpose with each other, in what is called Hybridization (3). This process

allows a bigger binding energy between the carbon atoms and its surroundings.

Carbon nanotubes can be single wall (SWNT) or multi wall (MWNT).

As shown in Fig 2.1, the first one can be viewed as a rolled graphene sheet

and the last one can be visualised as multiples SWNTs inside each other. So,

it is important to understand the basic properties of graphene in order to

understand the basic properties of carbon nanotubes (3).
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Figure 2.1: A) Shows a graphene sheet being rolled in a SWNT (1) and B)

shows a high resolution TEM image of a MWNT (2).

2.2
Basic electronic properties of graphene

Graphene is made of carbon atoms with electrons on a sp2 hybridization.

This electron configuration leads to the planar hexagonal structure observed in

Fig 2.1 with a σ bond between the carbon atoms and a π bound perpendicular

to the graphene sheet. Eq (1) shows the wave functions of this hybridized

orbital.
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We can perform a simple tight binding calculation on the electrons of

the 2pz orbitals of this structure to find the energy dispersion of the π energy

bands, which are the most important for the electronic properties of graphene

(3).

Figure 2.2: (a) Shows the graphene’s hexagonal structure, unit cell and lattice

vectors. (b) Shows the reciprocal lattice vectors (3).

Selecting the unit cell, the lattice vectors −→a1 and −→a2 and the reciprocal

lattice vectors
−→
k1 and

−→
k2 of Fig 2.2, we can calculate the energy dispersion eq

(2). Where γ0 is the nearest neighbor transfer integral, s is the overlap integral

and a =
√−→ai · −→ai = 0.249nm is the graphene’s lattice constant. The result of

this calculation is plotted on Fig 2.3.
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Figure 2.3: a) Shows the energy dispersion of the π band. b) Shows a zero

energy gap on the k point (4)

From those relations, we can calculate the density of states of graphene

and realize that this material is a zero gap semi conductor at the K point,

that is a high symmetry point of the brilloin zone defined at Fig 2.2. This

means that any energy value can send an electron from the valence band to

the conduction band at this point, and it gives rise to quantum effects on

carbon nanotubes (3).

Now we are going to show some basic properties of the structure of

carbon nanotubes and then apply the preceding graphene’s properties on that

structure.

2.3
SWNT structure

Single wall carbon nanotubes can be divided in two categories, depending

how the graphene sheet will be rolled to form the tubes. Fig 2.4 shows a

graphene sheet with two dashed lines. The angle between them is 300 and the

graphene sheet can be rolled in any direction between these two lines in order

to form the tubes. This direction will be perpendicular to the nanotube axis.

If the chosen direction is 00 or 300, the SWNT is said to be achiral. More

specifically, the 00 direction is said to be zigzag and the 300 direction is said

to be armchair. If the sheet is rolled between those angles, the SWNT is said

to be chiral. It is important to note that an angle higher than 300 will add

no different result from what I have said, since an angle of (60-α)0 would just

have the same effect of an angle of α0 and so on.
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Figure 2.4: The two dashed lines define the limit to the points (n,m) that can

form the SWNTs (5).

To form the SWNT structure, the graphene sheet is rolled from the point

(0,0) on Fig 2.4 to any point (n,m) given that 0 ≤ |m| ≤ n. Considering that

the length of the tube is much bigger than the tube’s diameter, the pair of

numbers (n,m) provides all the SWNT features. The vector linking the point

(0,0) to the point (n,m) is called chiral vector and is defined by
−→
Ch = n−→a1+m−→a2 ,

where the vectors −→a1 and −→a2 are the unit vectors of the graphene unit cell found
on Fig 2.4 (3).

By this vector, we are able to find the diameter and the translational

vector of a (n,m) SWNT, which the last one is the unit vector of the tube (3).

The diameter d is related with the chiral vector by:

d = |−→Ch|/π

so,

d = a
√
n2 +m2 + nm/π (2-3)

To find the translational vector
−→
T , we require this vector to be perpen-

dicular to
−→
Ch:

−→
T =

(2m+ n)

Q
−→a1 − (2n+m)

Q
−→a2 (2-4)

Where Q the greatest common divisor between 2m + n and 2n +m. At

last, another basic structural property that the (n,m) numbers can provide is

the number of carbon atoms on the unit cell of the SWNT. The portion of the

graphene sheet that is used to built the unit cell of the tube is formed by the
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chiral and translational vector, and it has an area of |−→Ch×−→T |. And since that

area have |−→a1 ×−→a2 | graphene’s unit cell areas, each one with 2 carbon atoms,

the number of atoms on the SWNT unit cell is given by (3):

Number of atoms = 2N =
4(n2 +m2 +mn)

Q
(2-5)

To find the reciprocal lattice vector of the SWNT, one have to make the

following:

−→
T · −→K1 = 0

−→
T · −→K2 = 2π

−→
Ch · −→K1 = 2π

−→
Ch · −→K2 = 0 (2-6)

Where
−→
K1 and

−→
K2 are the reciprocal SWNT vectors along the circunfer-

ential direction and nanotube axis respectively. Since we consider an infinitely

long SWNT, the
−→
K2 vector will be continuous. However, the cylindrical struc-

ture of the tube will lead to a discrete integer multiples ranging from 0 to

N -1 of
−→
K1. This feature can be visualized on Fig 2.5, where it is shown the

reciprocal lattice vectors of a (4,2) SWNT as an example (3).

Figure 2.5: This figure shows the reciprocal lattice vectors of a (4,2) SWNT

(3).

2.4
Basic electronic properties of SWNTs

One simple way to find the energy dispersion relation of a SWNT is

replacing the reciprocal vectors
−→
K1 and

−→
K2 of a SWNT into the energy

dispersion relation of graphene, in what is called zone folding method. Since

the
−→
K1 vector is quantized due to the cylindrical structure of the tube, the
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new energy relations will consist of N cross sections of the graphene’s energy

relation (3). Eq 7 shows the SWNT energy relations while Fig 2.6 shows those

bands for some SWNTs.

ESWNT,μ(k) = EGraphene(μ
−→
K1 + k

−→
K2), μ = 0..N − 1 and − π

T
< k <

π

T
(2-7)

Figure 2.6: This figure shows the energy dispersion for a) (5,5), b) (9,0) and

c) (10,0) tubes. d) Shows a plot of the density of states for some tubes (3).

The density of states on Fig 2.6d also shows the presence of peaks

that are called Van Hove singularities. Those singularities are due to the

cylindrical structure of the SWNTs that quantizes the momentum in the

direction perpendicular to the axis and forms energy dispersions with several

states with close values of energy. Those singularities are very important to

characterization techniques, since electron transitions can occur between those

peaks (3).

The SWNT will be a semi conductor if none of those cross sections passes

through the K point of graphene. If one of those lines passes through this point,

the tube will present a finite density of states at the Fermi level, and will have a

metallic behaviour. As a general rule, it can be shown that the SWNT presents

a metallic behaviour when the number n −m is divisible by 3. However it is

important to keep in mind that the calculation of those energy dispersions are

only approximative and the n − m relation can not be applied for SWNTs

with diameter less than ∼ 0.5nm (24). Such nanotubes can be found as a

central shell of a MWNT, into the channel of a porous crystal or anchored
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to the surface of larger nanotubes (24). The metallic SWNTs have a ballistic

conduction with a localization length that increase with the tube’s diameter.

For typical diameters, ∼1nm, the localization length is over 10μm, resulting

in exceptional ballistic properties (13, 14).

2.5
Basic mechanical properties of SWNTs and MWNTs

Carbon nanotubes are also well known because of its mechanical prop-

erties. Min-Feng, Y et al., (6) made a tensile load experiment using MWNTs

attached to two AFM tips, as shown in Fig 2.7. They found a Young’s modulus

on the direction of the tube axis ranging from ∼ 270GPa to ∼ 940GPa for the

outer layers of the tested MWNTs (6). Tight binding calculations performed

by Hernández, E et al., (15) shows that SWNTs have a Young’s modulus on

the order of 1.2TPa for the diameters ranging from 0.8nm to 2.0nm. They

also performed calculations on other structures such as BC3, BN, and BC2N

SWNTs and found that those structures have a lower Young’s modulus when

compared with pure carbon SWNTs. The obtained values for them are around

0.8Tpa to 1.0TPa. This decreasing in this values is due to the less strong in-

teraction between the B-C or the N-C bond in comparison to the C-C bond.

They also realized that this values remains approximately constant for diamet-

ers greater than 0.8nm for all kinds of SWNTs and have a decreasing value

with the decreasing diameter (15).

Figure 2.7: Multi Wall carbon nanotube attached to an AFM tip under a

tensile load experiment (6).
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Carbon nanotubes are quite soft on the direction perpendicular to the

wall of the tube (3). More than that, experiments using AFM on the tapping

mode had shown that MWNTs have a Young’s modulus on the range of 0.3GPa

to 4GPa on this direction (25).

2.6
Basic phonon relations of graphene and SWNT

Like the electronic properties, most of the the phonon mode features of

the SWNTs can be understood and extracted by the relations of graphene.

However, due to the cylindrical structure, the lower frequency modes of

graphene will not correspond to the modes of same frequency on SWNTs

and some corrections must be made (3). The phonon modes of graphene are

described by solving the dynamical matrix equation detD(
−→
k ) = 0 up to the

4th nearest neighbours on the graphene sheet. Fig 2.8 shows dispersions curves

calculated by Pedro Venezuela et al., (7).

Figure 2.8: This figure shows phonon dispersion curve of a graphene sheet (7).

It is important to note, that due to curvature effects, some of the modes

resulting from that equation can not be applied to SWNTs, as shown in Fig

2.9.
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Figure 2.9: This figure shows a) a mode of the of graphene sheet that gives rise

to a nonzero mode on a carbon nanotube and b) an acoustic mode of graphene

that can not be applied on SWNTs (3).

Taking in account the curvature effects into the dynamical matrix, we

get a new dispersion relation for phonons on the SWNT. The plot on the Fig

2.10 shows the dispersion curves.

Figure 2.10: This figure shows a) phonon dispersion curve and b) a plot of the

density of states of a (10,10) SWNT taking in account the curvature effects

into the dynamical matrix (3).
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