
 28

3
Data Processing Slice Load Balancing

This thesis proposes a load balancing mechanism for DDS-based systems

named Data Processing Slice Load Balancing (DPSLB). The key concept of the

proposed solution is the Data Processing Slice (DPS), which is the basic (and

atomic) unit of data processing load to be distributed among server nodes in a

DDS Domain. These server nodes will be called Processing Nodes throughout

the remainder of this thesis. The general idea is that each Processing Node (PN)

has some DPS assigned to it, and that each DPS covers an equal range within the

space of all possible values of a chosen data identifier or attribute. Thus, in

DPSLB, load balancing is equivalent to a redistribution of the sets of assigned

DPS among the Processing Nodes according to their current load. The Processing

Node’s current load is indicated by several metrics, such as its CPU and memory

utilization rates.

Figure 9 – DPS Load Balancing Architecture

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 29

Figure 9 shows the two main nodes that compose the DPS Load Balancing

Solution within a DDS domain that has several Client Publisher and Subscriber

Nodes: a set of homogeneous Processing Nodes and a Load Balancer. The Pro-

cessing Node (PN), as suggested by its name, is in charge of receiving and pro-

cessing data produced by Publisher Client Nodes. The specific processing task (on

each data item produced by a Publisher) is entirely application dependent, and the

DPSLB is totally agnostic to it. It may range from a simple transla-

tion/codification of data, to a complex analysis based on the content or attributes

of the data items. The Load Balancer (LB) is responsible for monitoring the cur-

rent load metrics of all Processing Nodes, defining the actions that accomplish the

redistribution of the system’s workload (i.e. reassignment of DPS) when an un-

balance is detected and synchronizing the actions executed by PNs to move DPSs

between them. It is expected that there is at least one client node publishing data

on the DDS Domain and that this data needs to be processed by Processing

Nodes.

The DPSLB solution was designed to Pub/Sub systems that supports con-

tent-based subscriptions and are broker-less, i.e. Pub/Sub systems that do not have

brokers and employ a fully decentralized P2P architecture such as the DDS stand-

ard, explained in section 2.1. The data items produced by the Publisher Client

Nodes are delivered directly to the Processing Nodes without the need of central-

ized elements such as brokers. Thus, the Processing Nodes (PNs) are the Sub-

scribers in charge of processing the data items instead of brokers that route the

data items to other elements. It is expected that the proposed solution will be de-

ployed in systems with thousands of Processing Nodes and hundreds of thousands

of Client Nodes and a data production rate estimated of dozens of gigabits per

second.

In its current conception, the DPS Load Balancing supports applications

where each data item is processed independently of any other item. This limitation

comes from the way that processing load is distributed among PNs: through the

application of disjoint subscription filters. Since a Processing Node does not re-

ceive all data items published on the DDS Domain, PN may be unable to process

a data item “A” that depends on data item “B” delivered to and processed by an-

other Processing Node. Hence, the proposed load balancing solution is tailored for

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 30

data-parallel applications, i.e. where each data item is processed independently of

other items, and data items can be processed out of order by any Processing Node.

Data Processing Slice Load Balancing suits any application that demands

high performance and scalable processing of large data streams, produced contin-

uously by many sources (Publishers). Example applications are onboard car sur-

vivability assistance, fleet tracking and management, video processing, participa-

tory (collaborative) sensing, Smart Cities, etc. A concrete example are the applica-

tions that have to re-encode videos or process images. Some fleet tracking and

management systems, for instance, should generate alerts when vehicles make an

unexpected stop or deviate from their planned routes. Such applications can pro-

cess the data items in any order and each data item do not have any kind of de-

pendency or relationship with the others.

3.1
Data Processing Slice

As mentioned, the proposed solution relies on the concept of Data Pro-

cessing Slice (DPS), or simply Slice. A Slice represents a percentage of the total

data stream volume to be processed by all PNs. Every data item of the data stream

(e.g. produced by a Publisher Client Node) must be assigned to a single DPS in

order to be processed by some Processing Node. If a data item is not assigned to

any Slice it will not be delivered to a PN for processing.

Each Slice is identified by a unique logical numeric ID (identifier), ranging

from zero to the total number of defined Slices, minus one. Thus, the DDS Topic

carrying application data has a specific numeric field, Slice ID, assigned to each

data item. The total number of Slices is a constant defined in the PN software lay-

er that must be equal to all PNs. Figure 10 shows an example of data item objects

published by temperature sensors (with their sensor ID and the measured tempera-

ture). The field Slice ID is required for the DPS Solution, as aforesaid. The same

temperature sensor may produce data items assigned to distinct Slice IDs, as illus-

trated by the data item objects published by Sensor ID 1 in Figure 10, and differ-

ent sensors can publish data item objects into the same Slice ID.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 31

Figure 10 – Example of data item objects

Unlike Virtual Servers [36] [37] [38], Data Processing Slices do not behave

as new Processing Nodes – as this would increase the system overhead since each

Virtual Server is a node monitored and managed by the Load Balancer, which in-

creases the CPU, memory and network overheads because more software compo-

nents are instantiated – but only as a logical partition of the global data volume.

The arbitrary assignment of data items to slice IDs enables the choice of load dis-

tribution with different granularities (i.e. coarse-grained or fine–grained load dis-

tribution). Because the global data item space is partitioned into the set of Slices, a

higher amount of Slices allows to split the workload in smaller portions (fine-

grained), and a small amount of Slices means coarse-grained workload distribu-

tion. This problem, “balls into bins”, is better explained by Martin Raab and An-

gelika Steger [50]. The number of DPS is also a upper bound for the maximum

quantity of Processing Nodes, since each PN needs at least one DPS to get in-

volved into the DPSLB.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 32

Figure 11 – A possible DPS flow and distribution

Figure 11 illustrates a possible DPS flow and distribution where three Pub-

lisher Client Nodes write data items that are processed by two Processing Nodes

and where the results are consumed by a Subscriber Client Node. Data items pro-

duced from the smartphone (Slice 1) and aircraft (Slice 3) are processed by the

first PN. Data items from the desktop (Slice 8) are processed by the second PN,

which is in charge of processing data assigned to Slices 6 to 9. Considering that

other Publisher Client Nodes would generate data items, each DPS would repre-

sent about 10% of the system workload. Hence, the first PN would process rough-

ly 60% of all data items published while the second PN would process roughly

40% of it.

Figure 12 – DPS state transitions

As shown in Figure 12, each Slice has two possible states: (i) Available or

(ii) In Load Balancing Session. The available state informs that a Slice is opera-

tional and data items assigned to it can be delivered to PNs for processing. While

a Slice is In Load Balancing Session the DPSLB layer must cache data items as-

signed to this Slice, for later delivery to a PN. This caching is necessary for ensur-

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 33

ing that all data items are delivered (and processed only once) by a single PN dur-

ing the Load Balancing Process, as will be explained in detail in section 3.4.

3.2
Assignment Function

As previously mentioned, each produced data item must be assigned to a

single DPS. This is done by the Assignment Function, which is responsible for

determining a valid Data Processing Slice for each produced data items. The

DPSLB solution requires the Assignment Function to be a very fast and low cost

function, since it has to choose a DPS for each produced data item, and such data

items will probably be produced at a very high rate. It is also desirable that As-

signment Function produces a more or less uniform distribution of data items onto

the set of Slices. That is, all possible output values (Slice IDs) should have the

same probability of occurrence. But Assignment Functions that do not produce

uniform distributions – i.e. where some Slices receive more data items than others

– can also be used, since the workload can be balanced by re-arranging the num-

ber of Slices assigned to each Processing Node.

Figure 13 – An example of Assignment Function applied upon data item

The Assignment Function may be a hash function applied to a field of the

data item, to the data producer’s ID or a random value. A good candidate function

for this is the modulo operator (remainder of integer division). Figure 13 illus-

trates an Assignment Function that consists of a hash function which applies the

modulo operator to the Sensor ID field, in a configuration with ten Slices. Hence,

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 34

each data item computed by the Assignment Function is assigned to one DPS. As

shown, Sensor IDs 21, 1, 52 and 19 are mapped to Slice IDs 1, 1, 2 and 9, respec-

tively. The Assignment Function must be called before the data item is published

in the DDS Domain.

As the Assignment Function has to choose a DPS for each data item, it is

possible to implement an Assignment Function specific to an application. In a hy-

pothetical application that the data item has fields that hold the latitude and longi-

tude, the Assignment Function can choose a Slice based on the data item geo-

graphical position. For instance, if latitude is greater than zero the Assignment

Function chooses the Slice ID 0, otherwise it chooses the Slice ID 1.

3.3
DPS Solution

At the Processing Node there are two distinct software layers, the DPSLB

software layer and the application layer that uses DPSLB as a base software layer.

In order to receive data items, Processing Nodes create a DDS Content Filtered

Topic for each Topic of the application and associate it to a DDS Data Reader. If

the application wants to subscribe to Topic A, for instance, the DPSLB software

layer at Processing Node creates a DDS Content Filtered Topic of type Topic A

and next associates it to a DDS Data Reader. In the scenario of Figure 11, the first

PN would have a filter expression such “sliceID >= 0 and sliceID <= 5” and the

second PN a filter expression “sliceID >= 6 and sliceID <= 9”. When a data item

is received by the PN, it verifies whether the data item came from an DPS in state

Available. If so, PN forwards the item to the application, and otherwise it stores

the item on its local cache, as will be explained in section 3.4.

The Load Balancer plays the role of coordinator of the actions executed in

the Load Balancing Process, but the actions are effectively executed by the over-

loaded and the underloaded PNs. The LB has a module that contains the Load

Balancing Algorithm. This algorithm analyzes the load of the PNs and decides if

the system is unbalanced. In this case, the algorithm has to inform which are the

Slice-giving and the Slice-taking PNs and how many Slices should be moved

among these PNs, thus starting the Load Balancing Process.

The Load Balancing Algorithm is a generic module that can be implemented

using many algorithms such as [38]. This module is notified about new Processing

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 35

Nodes that are able to join the DPSLB solution and called when the Load Balanc-

er needs to analyze the system workload. The algorithm [38] classifies nodes into

overloaded, normal and underloaded. The main idea is transfer load from over-

loaded nodes to underloaded ones. After being called, the algorithm has to classify

the Processing Nodes and inform how many Slices should be moved from over-

loaded nodes (Slice-giving) to underloaded nodes (Slice-taking). With this infor-

mation, the Load Balancer is able to generate and send the corresponding com-

mands to Processing Nodes.

Figure 14 illustrates the interations between the nodes that compose the

DPSLB Solution. Data items produced by Publisher Client Nodes are processed

by PNs and Subscriber Client Nodes receive the processed data from PNs. The

Load Balancer interacts only with PNs: both to gather their current workload and

to send the load distribution actions to the corresponding PNs (depicted as red ar-

rows in Figure 14).

Figure 14 – Interactions between clients, Processing Nodes and Load Balancer

With the aim of uniquely identifying each data item and generating the

Merged Cache, explained in section 3.4, it is mandatory that all data items hold a

numeric ID field.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 36

3.4
Load Balancing Process

Load Balancing Process is the process of moving Slices from a PN to an-

other. The process is started when the Load Balancer detects a load unbalance in

the system and decides that some DPS should be moved to a different Processing

Node for load balancing. During this process both Processing Nodes involved, i.e.

the Slice-giving and Slice-taking, must work in a coordinated manner to guarantee

that all data items of the moved Slice are received and processed exactly once by

any PN.

Figure 15 – Data flow before, during and after the Load Balancing Process

Figure 15 illustrates the redirection of the data flow when Slice 5 is moved

from Processing Node A to B. During the Load Balancing Process (Figure 15 b)

both Processing Nodes receive data items assigned to DPS 5, although initially

none of them will process data items from this DPS. Instead they store these re-

ceived data items in their local caches. Then, PN A sends its cached items to B.

After receiving A’s cached items, PN B has to identify the data items that appear

in both caches and then generate a Merged Cache, which contains all data items of

DPS 5 without duplicates. Thus, the specific actions sent by the Load Balancer to

move a DPS between two PNs are:

 Update DPS´s state: A updates Slice´s state to In Load Balancing Session;

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 37

 Add DPS: B adds the Slice with In Load Balancing Session state;

 Remove DPS: A removes the Slice;

 Update DPS´s state: B updates Slice´s state to Available;

 Send cache: A sends its data item cache to B that merges its own cache

and A´s cache to generate de Merged Cache. After this, B notifies the ap-

plication about the data items.

After these actions the system completes the Load Balancing Process and

changes its data flow as shown in Figure 15 c. The Add and Remove actions de-

termine if the corresponding data items of the Slice are delivered or not, respec-

tively, to a node on the DDS Domain. This is possible by a dynamic adjustment of

the Content Filtered Topic´s filter expression in DDS.

After receiving data items from PN A’s cache, the node B has to identify the

items that appear in both caches and then generate a Merged Cache, which con-

tains all data items of either caches, but without occurrence of duplicated items.

Finally, DPSLB layer on B is able to notify application about the data items in the

Merged Cache. The actions executed during the Load Balancing Process ensure

that there is neither data item loss nor data item processed more than once.

If there are more than two PNs involved in the Load Balancing Process, the

Load Balancer starts one Load Balancing Session for each pair of Slice-giving and

Slice-taking PNs. For instance, if there are one Slice-giving PN (PN A) and two

Slice-taking PNs (PNs B and C), the Load Balancer starts one Load Balancing

Session for PNs A and B and after this Load Balancing Session finishes, it starts

the second one with PNs A and C. Each Load Balancing Session involves only

two PNs.

The Load Balancing processes permits not only use new PNs to increase the

system´s resources but also to reduce it when some PNs are idle, which enables

the system have an elasticity of resources. To do so, all Slices assigned to an idle

PN should be moved to another PN before the idle PN can leave the system. In the

scenario illustrated by Figure 15, whether PN B is detected as an idle PN, all its

Slices (only the Slice 5 is assigned to PN B) should be moved to PN A. Thus, a

new Load Balancing Process is started to move the Slice 5 from PN B to A.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 38

3.5
Discussion

While analyzing the Load Balancer classification, as explained in section

2.3.1, it is classified in centralized location, event-driven initiation and global ap-

proach. Despite being a centralized approach, data items need not pass through

LB on their way from client Publisher nodes to Processing Nodes. Instead, LB

only monitors the load of Processing Nodes and eventually becomes active to co-

ordinate the load redistribution process. Therefore, LB is not a bottleneck.

Due to DDS limitations with Content Filtered Topics, the DPSLB solution

does not support changing the expression applied on the DDS Content Filtered

Topic. To do so, the DPSLB needs to create a new DDS Data Reader with the

new Content Filtered Topic, destroy the old Data Reader and finally verify which

data items were received by both Data Readers, similarly in the Load Balancing

Process when the Slice-taking should generate its Merged Cache.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

